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Homomorphism: 

  Let G  and G  be two groups, then a map from G into G  is called group 

homomorphism iff 

( ) ( ). ( )f ab f a f b                                        ,a b G   

 A homomorphism f from G into G  is called an isomorphism if f is one-to-one and 

represented by G G . 

 A homomorphism of a group G into G itself is called an Endomorphism of G. 

 An isomorphism of a group G onto itself is called an automorphism of G. 

Theorem: The relation   of being isomorphic to in the set of all groups is an equivalence  

                 relation. 

Proof: Let G, G’. G’’ ……….be groups.  

Reflexive: The identity map :I G G  is an isomorphism, we have  G G for every  

       group G. 

        the relation   is reflexive. 

Symmetry:Let 'G G , then there exists a map ':f G G which is an onto  

       isomorphism. 

Thus 1 ':f G G   is bijection, since f is bijection. 

Now 1f   is a homomorphism, For if  1 '( )f a a   and  1 '( )f b b   

  where ' ' ',a b G   and  ,a b G  

  then  '( )f a a  and  '( )f b b  

Therefore   1 . ' 1( ) { ( ) ( )}f a b f f a f b   

            1{ ( )}f f ab    since f is a homomorphism 



 

 

             = ab 

             1 ' 1 '( ). ( )f a f b   

Thus  1f   is an isomorphism which is also onto 

Hence  'G G          'G G  

i.e. the relation   is symmetric. 

Transitive: Let  'G G  and  ' ''G G then there exists map ':G G   and ' '':G G  which  

       are isomorphisms. 

Therefore '':o G G    is an isomorphism and onto. 

Thus  'G G  and  ' ''G G   'G G  and   ''G G   

i.e. relation   is transitive. 

Hence    is equivalence relation. 

Kernel of a homomorphism: 

 If f is a homomorphism of a group G into a group G’ then a set K of all these elements 

of G which are mapped onto the identity e’ of G’ is called the Kernel of the homomorphism f 

i.e. if f is homomorphism of G into G’, then K is the Kernel of f if 

 K  =  x G  :     f(x) = e’     where e’  is the identity of G’   

Normal Subgroup: 

 A subgroup H of group G is called normal subgroup of G if for every x G  and for 

every h H , 1xhx H  .  

From this definition, we conclude that H is a normal subgroup of G iff 1xHx H    x G   

 Every group G have at least two normal subgroups, G itself and the subgroup 

consisting of the identity element ‘e’ alone, These are called improper normal subgroups. 

 

 



 

 

Theorem: A subgroup H of a group G is normal if and only if    1xHx H    x G   

Proof:            Let    1xHx H          x G   

      1xHx H       x G   

 H is a normal subgroup of G. 

Conversely,  let H is a normal subgroup of G. 

    1xHx H       x G               (1) 

Since               x G     1x G   

 So        1 1 1( )x H x H                           x G    

   1x Hx H                                  x G   

          1 1 1x x Hx x xHx                   x G   

    1H xHx                                  x G                                           (2)           

with the help of equation (1) and (2) 1xHx H    x G  . 

Theorem: The intersection of any two normal subgroup is a normal subgroup.  

Proof: Let H and K be any two normal subgroups of a group G. 

 Since H and K are subgroups of G therefore H K is also subgroup of G. 

Let    x G  and  n H K   

We have n H K   i.e.  n H   and  n K  

Since H is a normal subgroup of  G, 

  Then for x G , n H       1xnx H   

Similarly x G , n K       1xnx K   

i.e. 1xnx H   and  1xnx K         1xnx H K    

i.e. for every  x G  , 1xnx H K    we have  1xnx H K    

Hence  H K  is a normal subgroup of G. 



 

 

 

 

Theorem:  If N is a normal subgroup of G and H is  any subgroup of G, then prove that 

NH is a normal subgroup of G. 

Proof: Let 1 1n h  and   be any two elements of NH 

Then  1 2,n n N  and  1 2,h h H  

To prove,  NH is a subgroup of G, we should prove that    1

1 1 2 2n h n h NH
   

      1 1 1
1 1 2 2 1 1 2 2n h n h n h h n

    

    1 1 1 1
1 1 2 2 2 1 1 2.n h h n h h h h     

1 1 1 1 1
1 1 2 2 1 2 1 2( ) ( ) ( )n h h n h h h h         

Now N is normal and 1
2n N  , 1

1 2h h G     1 1 1 1
1 2 2 1 2( ) ( )h h n h h N      

Therefore  1 1 1 1
1 1 2 2 1 2( ) ( )n h h n h h N       

Since H is a subgroup of G therefore   

  1h H ,  2h H           1
1 2h h NH   

    1 1 1 1 1
1 1 2 2 1 2 1 2( ) ( ) ( )n h h n h h h h NH         

Hence NH is a normal subgroup of G. 

Theorem: If f is a homomorphism of a group G into a group G’ with kernel K, then K is a  

normal subgroup of G. 

Proof: Let f be a homomorphism of a group G into a group G’. Let e, e’ be the identities of G 

and G’ respectively, If K be the kernel of f then 

K  =  x G  :     f(x) = e’   

Since  '( )f e e , therefore  e K . Thus K is not empty. 



 

 

Let    ,a b K , then  1ab K  , '( )f b e  

So      1 1( ) ( ) ( )f ab f a f b   

             1( ){ ( )}f a f b   

  ' 1 1{ }e e   

  ' 'e e  

  'e  

i.e.        1ab K   for   ,a b K  

therefore K is a subgroup of G. 

Let  g G   and  k K  then  '( )f k e  

So  1 1( ) ( ) ( ) ( )f gkg f g f k f g   

                       1'( ) ( )f g e f g
  

    1
( ) ( )f g f g

  

  'e  

i.e.   1gkg K   for   g G   and  k K  

Hence K is normal subgroup of G. 

Questions: 

(1) If :f G G  be a group homomorphism, then under f identities and inverse 

corresponds i.e.             

 (i)    ( )f e e  where   e and e  are the identities of G and G  respectively. 

              (ii)     11( ) ( )f a f a
                                                      a G   

(2) The composition of two homomorphism is also homomorphism. 



 

 

(3) The intersection of any collection of normal subgroups is itself a normal 

subgroup. 

(4) Every subgroup of an abelian group is normal. 
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