

Module-II
Subject- Mathematics
Class \& Year- B. Sc. I ${ }^{\text {st }}$ year
Topic: Polar Equation of Conics
Keywords: Conics, Polar coordinates

By

Dr. Navin Kumar Jha
Assistant Professor
Department of Mathematics
Udá Pratap College, Varanasi
Email-id: jhajeeiitb@gmail.com
Mobile No.: +918853473352

Declaration: The content is exclusively meant for academic purpose and for enhancing the teaching and learning. Any other use for economic /commercial purpose is strictly prohibited. The user of the e-content shall not distribute, disseminate or share it with anyone else and its use is restricted to advancement of individual knowledge. The information provided in this e-content is authentic and best as per knowledge.

Signature of content developer

Module 2: Polar Equation of Conics

1 Polar Coordinates

In a plane, we can determine the position of a point P with respect to a fixed point O, called the pole, and a fixed straight line $O X$, called the initial line. We join P to O. If the length of $O P$ is r and $\angle X O P$ (which is traced out by the line $O P$ in revolving from the initial line $O X)$ is θ, then the polar coordinates of P is given by (r, θ). Here, r is called the radius vector and θ is called the vectorial angle of the point P (see Figure 1).

Figure 1: Polar Coordinate

The radius vector r is positive if it is measured from the origin along the line bounding the vectorial angle; if measured in the opposite direction it is negative. The vectorial angle θ is positive, if it is measured in anti-clockwise direction from $O X$ and it is negative, if is measured in clockwise direction from $O X$.

The polar coordinates of a point are not unique as in the Cartesian coordinates (see Figure 2). Adding 2π (or any multiple of 2π) to the vectorial angle does not alter the final position of the revolving line, so (r, θ) is always same point as $(r, \theta+2 n \pi)$, where n is an integer. Also, adding π or any odd multiple of π to the vectorial angle and changing the sign of radius vector gives the same point as before. Thus, the point $(-r, \theta+(2 n+1) \pi)$ is the same point as $(-r, \theta+\pi)$, i.e., is the point (r, θ).,

If $P O$ is produced to P^{\prime} so that $O P=O P^{\prime}$ in magnitude, then the the coordinates of P^{\prime} are either $(r, \theta+\pi)$ or $(-r, \theta)$.

Figure 2: Different representations of polar coordinates of a point

In general, taking into consideration the signs of polar coordinates (as discussed above), it is easy to see that the same point is represented by each of the following polar coordinates:
$(r, \theta),(-r, \theta+\pi),(r,-(2 \pi-\theta)),(-r,-(\pi-\theta))$.
Now, we are going to present some results regarding polar coordinates which would be used in upcoming sections.

(i) Relation between Cartesian and Polar Coordinates:

Let P be any point whose Cartesian coordinates, referred to rectangular axes, are (x, y), and whose polar coordinates, referred to O as pole and $O X$ as initial line, are (r, θ). Then, $O P=r$ and $\angle M O P=\theta$.

Draw $P M$ perpendicular from P to $O X$, so that we have $O M=x, M P=y$ (see Figure 3).

From $\triangle M O P$, we have

$$
\frac{P M}{O P}=\sin \theta \quad \text { and } \quad \frac{O M}{O P}=\cos \theta
$$

Figure 3: Cartesian and Polar Coordinate

$$
\text { or } \quad \frac{y}{r}=\sin \theta \quad \text { and } \quad \frac{x}{r}=\cos \theta
$$

which gives

$$
\begin{equation*}
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta . \tag{1.1}
\end{equation*}
$$

and hence, $r^{2}=x^{2}+y^{2} \quad$ and $\quad \tan \theta=\frac{y}{x}$, that is,

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \left(\frac{y}{x}\right) . \tag{1.2}
\end{equation*}
$$

Using equations (1.1) and (1.2), we can transform the polar coordinates into the Cartesian coordinates and vice versa.

(ii) Distance between two points whose polar coordinates are given:

Let P_{1} and P_{2} be two given points and let their polar coordinates be $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ respectively, so that, $O P_{1}=r_{1}, O P_{2}=r_{2}, \angle X O P_{1}=$ θ_{1} and $\angle X O P_{2}=\theta_{2}$, where O is the pole and $O X$ is the initial line. Then $\angle P_{1} O P_{2}=\theta_{2}-\theta_{1}$.

Using cosine rule in the triangle $O P_{1} P_{2}$ we have (see Figure 4)

$$
\cos \angle P_{1} O P_{2}=\frac{O P_{1}^{2}+O P_{2}^{2}-P_{1} P_{2}^{2}}{2 O P_{1} \cdot O P_{2}}=\frac{r_{1}^{2}+r_{2}^{2}-P_{1} P_{2}^{2}}{2 r_{1} r_{2}},
$$

which gives $\quad P_{1} P_{2}^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)$.
Figure 4: Distance between two given points
Therefore, the required distance between the points is given by

$$
\begin{equation*}
P_{1} P_{2}=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)} \tag{1.3}
\end{equation*}
$$

(iii) Polar equation of a straight line:

We know that the general equation of a straight line in rectangular Cartesian coordinate system can be written as

$$
a x+b y=l .
$$

Taking the origin as the pole and the positive x-axis as the initial line, the above equation, in polar coordinates (using transformation equation (1.1)), becomes

$$
\begin{equation*}
\frac{l}{r}=a \cos \theta+b \sin \theta . \tag{1.4}
\end{equation*}
$$

If the straight line passes through the pole, then $l=0$ and (1.4) becomes $a \cos \theta+b \sin \theta=0$.
Above equation (1.4) is called the general equation of a straight line in polar coordinates. It can also be written as

$$
r \cos (\theta-\alpha)=p
$$

where $\cos \alpha=a / \sqrt{a^{2}+b^{2}}, \sin \alpha=b / \sqrt{a^{2}+b^{2}}$ and $p=l / \sqrt{a^{2}+b^{2}}$.
Parallel and perpendicular lines: Since $a x+b y=l$ and $a x+b y=l^{\prime}$ represent parallel lines, therefore the lines

$$
\frac{l}{r}=a \cos \theta+b \sin \theta \quad \text { and } \quad \frac{l^{\prime}}{r}=a \cos \theta+b \sin \theta
$$

represent parallel lines in polar coordinates.
Again, since the line $b x-a y=l^{\prime}$ is perpendicular to the line $a x+b y=l$, the line perpendicular to the line

$$
\frac{l}{r}=a \cos \theta+b \sin \theta
$$

is given by

$$
\frac{l^{\prime}}{r}=b \cos \theta-a \sin \theta \quad \text { or } \quad \frac{l^{\prime}}{r}=a \cos \left(\theta+\frac{\pi}{2}\right)+b \sin \left(\theta+\frac{\pi}{2}\right) .
$$

Therefore, the equation of any line perpendicular to the line (1.4) is obtained by writing $\left(\theta+\frac{\pi}{2}\right)$ for θ and changing l to a new constant L.

(iv) Polar Equation of a straight line in normal form:

Let p be the length of the perpendicular $O M$ from the origin to the straight line, and let α be the angle which this perpendicular makes with the initial line $O X$ as shown in Figure 6. Let $P(r, \theta)$ be any point on the required line. Then $O P=r, \angle X O P=\theta$. In triangle $\triangle O P M$,

$$
O P=r, \angle P O M=\alpha-\theta, O M=p
$$

Now,

$$
\cos \angle P O M=\frac{O M}{O P} \quad \text { or, } \cos (\alpha-\theta)=\frac{p}{r}
$$

which gives $\quad \cos (\theta-\alpha)=\frac{p}{r}$.
Therefore, the required equation of straight line is

$$
\begin{equation*}
r \cos (\theta-\alpha)=p \tag{1.5}
\end{equation*}
$$

Particular Cases:

Case (i). If the straight passes through the pole, then $p=0$ and the equation (1.5) reduces to $\quad r \cos (\theta-\alpha)=0 \quad$ or, $\quad \theta=$ constant.
Case (ii). If the straight line is perpendicular to the initial line, then $\alpha=0$ and the equation of line reduces to $r \cos \theta=p$.
Case (iii). If the straight line is parallel to the initial line and is above it, then $\alpha=\pi / 2$ and the equation of line reduces to $r \sin \theta=p$.
Case (iv). If the straight line is parallel to the initial line and is below it, then $\alpha=$ $-\pi / 2$ or $3 \pi / 2$ and the equation of line reduces to $r \sin \theta=-p$.
(v) Area of the triangle whose vertices have polar coordinates $\left(r_{i}, \theta_{i}\right), i=1,2,3$.

Let $P_{1} P_{2} P_{3}$ be a triangle whose vertices have polar coordinates $\left(r_{i}, \theta_{i}\right), i=1,2,3$ taken in order as shown in Figure 6. Then, we have $O P_{1}=r_{1}, O P_{2}=r_{2}, O P_{3}=r_{3}$ and $\angle X O P_{1}=\theta_{1}, \angle X O P_{2}=\theta_{2}, \angle X O P_{3}=\theta_{3}$.
$\therefore \angle P_{1} O P_{2}=\theta_{2}-\theta_{1}, \angle P_{2} O P_{3}=\theta_{3}-\theta_{2}$ and $\angle P_{1} O P_{3}=\theta_{3}-\theta_{1}$.

Now, we have (see Figure 6)
area of $\triangle P_{1} P_{2} P_{3}=$ area of $\triangle O P_{1} P_{2}+$ area of $\triangle O P_{2} P_{3}$

$$
\text { - area of } \triangle O P_{1} P_{3}
$$

But,

$$
\text { area of } \begin{aligned}
\triangle O P_{1} P_{2} & =\frac{1}{2} O P_{1} \cdot O P_{2} \sin P_{1} O P_{2} \\
& =\frac{1}{2} r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right) .
\end{aligned}
$$

Similarly, area of $\triangle O P_{2} P_{3}=\frac{1}{2} r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)$ and area of $\triangle O P_{1} P_{3}=\frac{1}{2} r_{1} r_{3} \sin \left(\theta_{3}-\theta_{1}\right)$. Therefore,

$$
\text { area of } \begin{align*}
\triangle P_{1} P_{2} P_{3} & =\frac{1}{2} r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+\frac{1}{2} r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)-\frac{1}{2} r_{1} r_{3} \sin \left(\theta_{3}-\theta_{1}\right) \\
& =\frac{1}{2}\left(r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)+r_{3} r_{1} \sin \left(\theta_{1}-\theta_{3}\right)\right) \tag{1.6}
\end{align*}
$$

(vi) Polar Equation of a straight line passing through two given points:

Let $A\left(r_{1}, \theta_{1}\right)$ and $B\left(r_{2}, \theta_{2}\right)$ be two given points and $P(r, \theta)$ be any point on the line joining the points A and B.

Now, the three points A, P and B lie on a straight line, the area of the triangle $A P B$ is zero (see Figure 7).
$\therefore \quad r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+r r_{1} \sin \left(\theta_{1}-\theta\right)+r r_{2} \sin \left(\theta-\theta_{2}\right)=0$
(using equation (1.6))
$\Longrightarrow r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)=r r_{1} \sin \left(\theta-\theta_{1}\right)+r r_{2} \sin \left(\theta_{2}-\theta\right)$.

Figure 7: Straight line through two given points
Dividing both sides by $r r_{1} r_{2}$, we get

$$
\begin{equation*}
\frac{\sin \left(\theta_{2}-\theta_{1}\right)}{r}=\frac{\sin \left(\theta-\theta_{1}\right)}{r_{2}}+\frac{\sin \left(\theta_{2}-\theta\right)}{r_{1}} \tag{1.7}
\end{equation*}
$$

Equation (1.7) is the required equation of the straight line. One might reach to same result by noting that, area of $\triangle A O B=$ area of $\triangle A O P+$ area of $\triangle P O B$.
(vii) Polar Equation of a Circle:

Let the radius of the circle be a and $C(c, \alpha)$ be its center. Take an arbitrary point $P(r, \theta)$ on the circle. Then we have $O C=c, \angle X O C=\alpha, O P=r, \angle X O P=\theta$.
$\therefore \quad \angle P O C=\theta-\alpha$.

Figure 8: Circle with center (C, α) and radius a

Using cosine formula in $\triangle O P C$, we have

$$
\begin{aligned}
\cos \angle P O C & =\frac{O P^{2}+O C^{2}-P C^{2}}{2 O P \cdot O C} \\
\cos (\theta-\alpha) & =\frac{r^{2}+c^{2}-a^{2}}{2 r c}
\end{aligned}
$$

Therefore, the equation of required circle is

$$
\begin{equation*}
r^{2}+c^{2}-2 r c \cos (\theta-\alpha)=a^{2} . \tag{1.8}
\end{equation*}
$$

Particular cases:

Case (i). If the circle passes through the pole, then we have $c=a$ and the equation (1.8) reduces to

$$
r=2 a \cos (\theta-\alpha) .
$$

Case (ii). If the center of the circle lies on the initial line, then we have $\alpha=0$ and the equation (1.8) reduces to

$$
r^{2}-2 r c \cos \theta+c^{2}-a^{2}=0
$$

Case (iii). If the pole be on the circle and also the initial line pass through the center of the circle, then $c=a$ and $\alpha=0$. In this case, the equation of circle reduces to

$$
r=2 a \cos \theta .
$$

2 Polar Equation of Conics

2.1 Polar Equation of a Conic

(1) To find the polar equation of a conic with its latus rectum of length $2 l$, eccentricity e and the focus being the pole:

Let S be the focus of the conic which is being taken as the pole. Let $Z M$ be the directrix and A be the vertex of the conic. Draw a perpendicular $S Z$ from S to the directrix, and take $S Z$ (axis of conic) as the positive direction of the initial line.

Let $S L S^{\prime}$ be the latus rectum of length $2 l$ so that the semi-latus rectum $S L=l$, and let e be the eccentricity of the conic.

Take any point $P(r, \theta)$ on the conic. Then $S P=r$ and $\angle X S P=\theta$.

Draw perpendiculars $P M$ and $L T$ to the directrix from P and L, respectively. Also, draw perpendicular $P N$ from P to the initial line (axis). Then, we have $P M=N Z$ and $L T=S Z$ (see Figure 9).

Figure 9: Conic: $\frac{l}{r}=1+e \cos \theta$

Since the points P and L are on the conic, therefore by the definition of a conic, we have

$$
\begin{equation*}
S P=e \cdot P M \quad \text { and } \quad S L=e \cdot L T \tag{2.1}
\end{equation*}
$$

From the first relation in above equation, we have

$$
\begin{aligned}
S P & =e \cdot N Z=e \cdot(S Z-S N) \\
& =e \cdot S Z-e \cdot S P \cos \theta \\
\text { or } \quad r & =e \cdot S Z-e r \cos \theta
\end{aligned}
$$

which gives

$$
\begin{equation*}
r(1+e \cos \theta)=e \cdot S Z \tag{2.2}
\end{equation*}
$$

But using second relation in equation (2.1), we have

$$
S L=e \cdot S Z \quad \text { or } \quad l=e \cdot S Z
$$

Substituting this in (2.1), we get

$$
r(1+e \cos \theta)=l
$$

Hence the polar equation of the conic is

$$
\begin{equation*}
\frac{l}{r}=1+e \cos \theta \tag{2.3}
\end{equation*}
$$

If the distance $S Z$ between the focus S and the fixed line $Z M$ is d, then $l=e d$ and the above equation of the conic can be written as

$$
\frac{e d}{r}=1+e \cos \theta
$$

Remark 1: In the above derivation, we have taken $S Z$ (the direction directed from the focus towards the directrix) as the positive direction of the initial line. However, if we take the positive direction of the initial line as $Z S$, that is, opposite to the direction directed from the focus towards the directrix (see Figure 10), then the equation of the conic comes out to be

$$
\begin{equation*}
\frac{l}{r}=1-e \cos \theta \tag{2.4}
\end{equation*}
$$

In this case,

$$
\begin{aligned}
S P & =e \cdot M P=e \cdot Z N=e \cdot(Z S+S N) \\
& =e \cdot(T L+S P \cos \theta)=e \cdot L T+e \cdot S P \cos \theta
\end{aligned}
$$

Figure 10: Conic: $\frac{l}{r}=1-e \cos \theta$

This gives

$$
r=l+e r \cos \theta \quad \text { or } \quad \frac{l}{r}=1-e \cos \theta
$$

Corollary 1: If the conic is a parabola with latus rectum $4 a$, then $e=1$ and $l=2 a$, and the equation (2.3) takes the form

$$
\begin{equation*}
\frac{2 a}{r}=1+\cos \theta=2 \cos ^{2} \frac{\theta}{2} \quad \text { or } \quad r=a \sec ^{2} \frac{\theta}{2} \tag{2.5}
\end{equation*}
$$

Corollary 2: If α be the vectorial angle of a point A on conic $\frac{l}{r}=1+e \cos \theta$, then the radius vector of A, say r_{A}, will satisfy $\frac{l}{r_{A}}=1+e \cos \alpha$, which gives $r_{A}=\frac{l}{1+e \cos \alpha}$, and therefore, the polar coordinates of point A may be written as $\left(\frac{l}{1+e \cos \alpha}, \alpha\right)$. This is also called the point ' α^{\prime}.
(2) To find the polar equation of a conic with its focus being the pole and its axis inclined at an angle α to the initial line:

Let S be the focus coinciding with the pole and let $S Z$, the axis of the conic, be inclined at an angle α to the initial line $S X$.

Consider a point $P(r, \theta)$ on the conic. Draw perpendiculars $P M$ and $P N$ from P on the directrix $Z M$ and the axis $S Z$ respectively.

Let $S L(=l)$ be the semi-latus rectum of the conic and $L T(=S Z)$ be the perpendicular from L to the directrix $Z M$ (see Figure 11).

By the definition of a conic, we have

$$
\begin{aligned}
S P= & e \cdot P M \\
= & e \cdot N Z \quad(\because P M=N Z) \\
= & e \cdot(S Z-S N)=e \cdot S Z-e \cdot S N \\
= & e \cdot L T-e \cdot S P \cos (\theta-\alpha) \\
& (\because S Z=L T \text { and } S N=S P \cos (\theta-\alpha)) \\
& S P \cdot(1+e \cos (\theta-\alpha))=e \cdot L T=S L
\end{aligned}
$$

Figure 11: Conic: $\frac{l}{r}=1+e \cos (\theta-\alpha)$

This gives the required equation of conic as

$$
\begin{equation*}
r(1+e \cos (\theta-\alpha))=l \quad \text { or } \quad l=1+e \cos (\theta-\alpha), \tag{2.6}
\end{equation*}
$$

Note: Any result for the conic (2.6) can be obtained from the corresponding result for the conic (2.3) by replacing θ by $\theta-\alpha$., i.e., by writing $\theta-\alpha$ for $\theta, \beta-\alpha$ for β etc.
Particular Cases:
Case 1. If the axis $S Z$ of the conic coincides with the initial line (that is, $\alpha=0$), then its equation becomes $\frac{l}{r}=1+e \cos \theta$, which we have derived earlier as equation (2.3).
Case 2. If the positive direction of the axis is opposite to the that of the initial line (that is, $\alpha=\pi)$, then the equation of the conic becomes $\frac{l}{r}=1-e \cos \theta$, (see Remark 1).

2.2 Equations of the Directrices of a conic

To find the polar equation of the directrices of the conic $\frac{l}{r}=1+e \cos \theta$.
Case 1. When conic is an ellipse:
Let S be the focus coinciding with the pole and $Z M$ be the directrix of ellipse corresponding to the focus S. Let $P(r, \theta)$ be any point on the directrix $Z M$. Then $S P=r$ and $\angle Z S P=\theta$.

From $\triangle P S Z$ (see Figure 12(a)), we have

$$
\frac{S Z}{S P}=\cos \theta \text { or } S Z=S P \cos \theta=r \cos \theta
$$

But, L being a point on ellipse, we have

$$
S L=e \cdot L T=e \cdot S Z \text { or } S Z=\frac{S L}{e}=\frac{l}{e}
$$

Therefore,

$$
\begin{equation*}
r \cos \theta=\frac{l}{e} \quad \text { or } \quad \frac{l}{r}=e \cos \theta \tag{2.7}
\end{equation*}
$$

which is the required equation of the directrix $Z M$.
To obtain the equation of other directrix $Z^{\prime} M^{\prime}$ corresponding to the focus S^{\prime} (other than the pole S), we consider any point $P^{\prime}\left(r^{\prime}, \theta^{\prime}\right)$ on it. Then $S P^{\prime}=r^{\prime}$ and $\angle Z S P^{\prime}=\theta^{\prime}$, and therefore, $\angle Z^{\prime} S P^{\prime}=\pi-\theta^{\prime}$.

From $\triangle P^{\prime} S Z^{\prime}$,

$$
\begin{equation*}
S Z^{\prime}=S P^{\prime} \cos \left(\pi-\theta^{\prime}\right) \quad \text { or } \quad S Z^{\prime}=-r^{\prime} \cos \theta^{\prime} \tag{}
\end{equation*}
$$

But in case of an ellipse

$$
l=\frac{b^{2}}{a}=\frac{a^{2}\left(1-e^{2}\right)}{a}=a\left(1-e^{2}\right)
$$

and therefore

$$
S Z^{\prime}=Z Z^{\prime}-S Z=\frac{2 a}{e}-\frac{l}{e}=\frac{2 l}{e\left(1-e^{2}\right)}-\frac{l}{e}=-\left(\frac{e^{2}+1}{e^{2}-1}\right) \frac{l}{e} .
$$

Putting this value of $S Z^{\prime}$ in (*) above, we get

$$
\begin{equation*}
r \cos \theta=\left(\frac{e^{2}+1}{e^{2}-1}\right) \frac{l}{e} \quad \text { or } \quad \frac{l}{r}=\left(\frac{e^{2}-1}{e^{2}+1}\right) e \cos \theta \tag{2.8}
\end{equation*}
$$

which is the required equation of the directrix $Z^{\prime} M^{\prime}$.

Figure 12: Directrices of a conic.

Case 2. When conic is a hyperbola:

Let $Z M$ and $Z^{\prime} M^{\prime}$ be the directrices of hyperbola corresponding to foci S (which is also the pole) and S^{\prime} respectively. Proceeding in same manner as described in Case 1 above, the equation of $Z M$ is obtained and is given by

$$
\begin{equation*}
\frac{l}{r}=e \cos \theta \tag{1}
\end{equation*}
$$

For the equation of directrix $Z^{\prime} M^{\prime}$, take $P^{\prime}\left(r^{\prime}, \theta^{\prime}\right)$ on it. Then $S P^{\prime}=r^{\prime}, \angle Z^{\prime} S P^{\prime}=\theta^{\prime}$.
From $\triangle P^{\prime} S Z^{\prime}$ (see Figure 12(b)),

$$
\begin{equation*}
S Z^{\prime}=S P^{\prime} \cos \theta^{\prime} \text { or } \quad S Z^{\prime}=r^{\prime} \cos \theta^{\prime} \tag{**}
\end{equation*}
$$

But, in case of a hyperbola

$$
l=\frac{b^{2}}{a}=\frac{a^{2}\left(e^{2}-1\right)}{a}=a\left(e^{2}-1\right)
$$

and therefore

$$
\begin{aligned}
S Z^{\prime} & =S Z+Z Z^{\prime}=\frac{l}{e}+\frac{2 a}{e} \\
& =\frac{l}{e}+\frac{2 l}{e\left(e^{2}-1\right)}=\left(\frac{e^{2}+1}{e^{2}-1}\right) \frac{l}{e}
\end{aligned}
$$

Putting this value of $S Z^{\prime}$ in $\left(^{* *}\right)$ above, we get

$$
\begin{equation*}
r \cos \theta=\left(\frac{e^{2}+1}{e^{2}-1}\right) \frac{l}{e} \quad \text { or } \quad \frac{l}{r}=\left(\frac{e^{2}-1}{e^{2}+1}\right) e \cos \theta \tag{2}
\end{equation*}
$$

which is the required equation of the directrix $Z^{\prime} M^{\prime}$.
(Note that the equations of directrices in case of ellipse and hyperbola are same.)

Case 3. When conic is a parabola:

In this case, we have a unique focus S and only one directrix $Z M$. Let $P(r, \theta)$ be a point on $Z M$. Then $S P=r$ and $\angle Z S P=\theta$. We have, $S Z=S P \cos \theta=r \cos \theta$. Also, $S Z=L T=S L=l$. This gives, $r \cos \theta=l$ and therefore the equation of directrix $Z M$ is given by

$$
\frac{l}{r}=\cos \theta
$$

Solved Examples

1: Show that the equations $\frac{l}{r}=1+e \cos \theta$ and $\frac{l}{r}=-1+e \cos \theta$ represent the same conic.
Sol.: The equations of given conics are

$$
\begin{align*}
& \frac{l}{r}=1+e \cos \theta \tag{1}\\
& \text { and } \frac{l}{r}=-1+e \cos \theta . \tag{2}
\end{align*}
$$

Let $P\left(r_{1}, \theta_{1}\right)$ be a point on the conic (1). Since the point $\left(r_{1}, \theta_{1}\right)$ can also be written as $\left(-r_{1}, \pi+\theta_{1}\right)$, therefore it also lies on (1) and so, we have

$$
\begin{aligned}
\frac{l}{-r_{1}} & =1+e \cos \left(\pi+\theta_{1}\right) \\
\Longrightarrow-\frac{l}{r_{1}} & =1-e \cos \theta_{1} \Longrightarrow \frac{l}{r_{1}}=-1+e \cos \theta_{1},
\end{aligned}
$$

which shows the point $P\left(r_{1}, \theta_{1}\right)$ lies on the conic (2).
Again, if $\left(r^{\prime}, \theta^{\prime}\right)$ is a point on (2), then

$$
\begin{aligned}
\frac{l}{r^{\prime}} & =-1+e \cos \theta^{\prime} \\
\Longrightarrow-\frac{l}{r^{\prime}} & =1-e \cos \theta^{\prime} \Longrightarrow \frac{l}{-r^{\prime}}=1+e \cos \left(\pi+\theta^{\prime}\right)
\end{aligned}
$$

which shows that the point $\left(-r^{\prime}, \pi+\theta^{\prime}\right)$ lies on conic (1). But the point $\left(r^{\prime}, \theta^{\prime}\right)$ is same as the point $\left(-r^{\prime}, \pi+\theta^{\prime}\right)$. So, $\left(r^{\prime}, \theta^{\prime}\right)$ also lies on conic (1).
Thus, we have shown that each point on conic (1) also lies on conic (2), and vice versa, and therefore, conics represented by (1) and (2) are same.

2: In a conic, prove the following:
(i) the sum of the reciprocals of the segments of any focal chord of conic is constant.
(ii) the sum of the reciprocals of two perpendicular focal chords is constant.

Sol.: Let the equation of the conic be

$$
\begin{equation*}
\frac{l}{r}=1+e \cos \theta \tag{1}
\end{equation*}
$$

(i) Let $P S P^{\prime}$ be any focal chord of conic such that the vectorial angle of P is α. Then the vectorial angle of P^{\prime} is $\pi+\alpha$. Thus the polar coordinates of P and P^{\prime} are ($S P, \alpha$) and ($S P^{\prime}, \pi+\alpha$) respectively (see Figure (a) below).

(a) Focal chord $P S P^{\prime}$ of conic

(b) Perpendicular focal chords $P S P^{\prime}$ and $Q S Q^{\prime}$ of conic

Since P and P^{\prime} both lie on the conic, we have

$$
\frac{l}{S P}=1+e \cos \alpha \text { and } \frac{l}{S P^{\prime}}=1+e \cos (\pi+\alpha)=1-e \cos \alpha
$$

This gives

$$
\frac{l}{S P}+\frac{l}{S P^{\prime}}=2 \quad \text { or } \quad \frac{1}{S P}+\frac{1}{S P^{\prime}}=\frac{2}{l}=\text { a constant }
$$

which implies that the sum of the reciprocals of the segments of any focal chord of conic is constant. The above result can also be expressed as "the semi-latus rectum is the harmonic mean between the segments of a focal chord."
(ii) Let $P S P^{\prime}$ and $Q S Q^{\prime}$ be two perpendicular focal chords of conic (see Figure (b) above).

Then the vectorial angles of Q, P^{\prime} and Q^{\prime} are $\frac{\pi}{2}+\alpha, \pi+\alpha$ and $\frac{3 \pi}{2}+\alpha$ respectively.
Since P, Q, P^{\prime} and Q^{\prime} lie on conic, we have

$$
\begin{aligned}
\frac{l}{S P} & =1+e \cos \alpha, \frac{l}{S Q}=1+e \cos \left(\frac{\pi}{2}+\alpha\right)=1-e \sin \alpha \\
\frac{l}{S P^{\prime}} & =1+e \cos (\pi+\alpha)=1-e \cos \alpha, \frac{l}{S Q^{\prime}}=1+e \cos \left(\frac{3 \pi}{2}+\alpha\right)=1+e \sin \alpha
\end{aligned}
$$

This gives

$$
S P=\frac{l}{1+e \cos \alpha}, S Q=\frac{l}{1-e \sin \alpha}, S P^{\prime}=\frac{l}{1-e \cos \alpha}, S Q^{\prime}=\frac{l}{1+e \sin \alpha}
$$

Therefore,

$$
\begin{aligned}
& P P^{\prime}=S P+S P^{\prime}=\frac{l}{1+e \cos \alpha}+\frac{l}{1-e \cos \alpha}=\frac{2 l}{1-e^{2} \cos ^{2} \alpha} \\
& Q Q^{\prime}=S Q+S Q^{\prime}=\frac{l}{1-e \sin \alpha}+\frac{l}{1+e \sin \alpha}=\frac{2 l}{1-e^{2} \sin ^{2} \alpha}
\end{aligned}
$$

which shows that

$$
\frac{1}{P P^{\prime}}+\frac{1}{Q Q^{\prime}}=\frac{1-e^{2} \cos ^{2} \alpha}{2 l}+\frac{1-e^{2} \sin ^{2} \alpha}{2 l}=\frac{2-e^{2}}{2 l}=\text { a constant. }
$$

3: Prove that the locus of middle points of focal chords of a conic is a conic of the same type.
Sol.: Let $P S Q$ be a focal chord of the conic

$$
\begin{equation*}
\frac{l}{r}=1+e \cos \theta \tag{1}
\end{equation*}
$$

and α be the vectorial angle of P, then the vectorial angle of Q will be $\pi+\alpha$.
Since P and Q lie on the conic (1), we have

$$
\begin{equation*}
\frac{l}{S P}=1+e \cos \alpha \text { and } \frac{l}{S Q}=1+e \cos (\pi+\alpha)=1-e \cos \alpha . \tag{2}
\end{equation*}
$$

Let $R\left(r^{\prime}, \theta^{\prime}\right)$ be the middle point of the focal chord $P S Q$, then from Figure (13), $\theta^{\prime}=\alpha$ and

$$
\begin{aligned}
r^{\prime} & =S R=S P-P R=S P-\frac{S P+S Q}{2}=\frac{S P-S Q}{2} \\
& =\frac{1}{2}\left[\frac{l}{1+e \cos \alpha}-\frac{l}{1-e \cos \alpha}\right]=-\frac{l e \cos \alpha}{1-e^{2} \cos ^{2} \alpha} . \quad(\text { using }(2))
\end{aligned}
$$

Therefore,

$$
r^{\prime}=-\frac{l e \cos \theta^{\prime}}{1-e^{2} \cos ^{2} \theta^{\prime}}
$$

Hence, the locus of $R\left(r^{\prime}, \theta^{\prime}\right)$ is the curve

$$
r=-\frac{l e \cos \theta}{1-e^{2} \cos ^{2} \theta} \text {, i.e., } r^{2}\left(1-e^{2} \cos ^{2} \theta\right)+l e r \cos \theta=0 .
$$

Transforming the above equation to Cartesian coordinates, we have

$$
\begin{equation*}
x^{2}+y^{2}-e^{2} x^{2}+l e x=0 \text { or }\left(1-e^{2}\right) x^{2}+y^{2}+l e x=0, \tag{3}
\end{equation*}
$$

which being a second degree equation in x and y represents a conic.
The equation (3) represents an ellipse, a parabola or a hyperbola according as

$$
0^{2}-\left(1-e^{2}\right)<,=\text { or }>0, \quad \text { that is, } e<,=\text { or }>1 .
$$

Thus, the conic (3) is of the same type as the given conic (1).
4: If $P S Q$ and $P S^{\prime} R$ be two chords of an ellipse through the foci S and S^{\prime}, then prove that $\frac{P S}{S Q}+\frac{P S^{\prime}}{S^{\prime} R}$ is independent of the position of point P.
Sol.: Let the equation of the ellipse, with focus S being the pole, be

$$
\begin{equation*}
\frac{l}{r}=1+e \cos \theta \tag{1}
\end{equation*}
$$

Let α be the vectorial angle of P, then the vectorial angle of Q will be $\pi+\alpha$. Since P and Q lie on the conic (1), we have

$$
\frac{l}{S P}=1+e \cos \alpha \text { and } \frac{l}{S Q}=1+e \cos (\pi+\alpha)=1-e \cos \alpha
$$

This gives

$$
\begin{equation*}
\frac{1}{S P}+\frac{1}{S Q}=\frac{1+e \cos \alpha}{l}+\frac{1-e \cos \alpha}{l}=\frac{2}{l} \quad \text { or } \quad \frac{S P}{S Q}=\frac{2}{l} S P-1 . \tag{2}
\end{equation*}
$$

Figure 13:

Figure 14:

Figure 15:

Similarly, for the focal chord $P S^{\prime} R$, we have

$$
\begin{equation*}
\frac{S^{\prime} P}{S^{\prime} R}=\frac{2}{l} S^{\prime} P-1 . \tag{3}
\end{equation*}
$$

Adding (2) and (3), we get

$$
\frac{S P}{S Q}+\frac{S^{\prime} P}{S^{\prime} R}=\frac{2}{l}\left(S P+S^{\prime} P\right)-2
$$

But for an ellipse, $S P+S^{\prime} P=2 a=$ length of major axis, therefore
$\frac{P S}{S Q}+\frac{P S^{\prime}}{S^{\prime} R}=\frac{2}{l}(2 a)-2=\frac{4 a}{l}-2=$ a constant independent of α i.e. the position of P.
5: A point P moves, so that the sum of its distance from two fixed points S and S^{\prime} is constant and equal to $2 a$. Show that P lies on the conic

$$
\frac{a\left(1-e^{2}\right)}{r}=1-e \cos \theta
$$

referred to S as pole and $S S^{\prime}$ as initial line, $S S^{\prime}$ being equal to $2 a e$.
Sol.: Taking S as pole and $S S^{\prime}$ as initial line, let the polar coordinates of point P be (r, θ). Then $S P=r$ and $\angle S^{\prime} S P=\theta$.
Given that $S S^{\prime}=2 a e$ and $S P+S^{\prime} P=2 a$, from $\triangle S P S^{\prime}$ in Figure (15), we have

$$
\begin{aligned}
\cos \theta & =\frac{S P^{2}+S S^{\prime 2}-S^{\prime} P^{2}}{2 S P \cdot S S^{\prime}} \\
& =\frac{r^{2}+(2 a e)^{2}-(2 a-r)^{2}}{2 r(2 a e)} \\
& =\frac{r^{2}+4 a^{2} e^{2}-4 a^{2}-r^{2}+4 a r}{4 r a e}=\frac{a\left(e^{2}-1\right)+r}{r e} \\
\therefore \quad e \cos \theta & =1+\frac{a\left(e^{2}-1\right)}{r} \quad \text { or } \quad \frac{a\left(1-e^{2}\right)}{r}=1-e \cos \theta,
\end{aligned}
$$

which is the required locus of P and is a conic.

6: A circle of diameter d passing through the focus of a conic, whose latus rectum is $2 l$, meets the conic in four points whose distances from the focus are $r_{1}, r_{2}, r_{3}, r_{4}$, then prove that

$$
\begin{array}{ll}
\text { (i) } r_{1} r_{2} r_{3} r_{4}=\frac{d^{2} l^{2}}{e^{2}}, \quad \text { (ii) } \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{2}{l} \text {. } . \text {. } \\
\text {. }
\end{array}
$$

Sol.: Taking the focus as pole and the axis of conic as initial line, the equation of conic is

$$
\begin{equation*}
l / r=1+e \cos \theta \tag{1}
\end{equation*}
$$

The equation of the circle passing through the focus may be taken as

$$
\begin{equation*}
r=d \cos (\theta-\alpha)=d(\cos \theta \cos \alpha+\sin \theta \sin \alpha), \tag{2}
\end{equation*}
$$

where d is the diameter of the circle and α is the angle which the diameter through the pole makes with the initial line. Eliminating θ from (1) and (2), we get

$$
\begin{array}{ll}
& r=d\left[\frac{l-r}{e r} \cos \alpha+\sqrt{1-\left(\frac{l-r}{e r}\right)^{2}} \sin \alpha\right] \\
\text { or } & {\left[r-\frac{l-r}{e r} d \cos \alpha\right]^{2}=d^{2} \sin ^{2} \alpha\left[1-\left(\frac{l-r}{e r}\right)^{2}\right]} \\
\text { or } & e^{2} r^{4}+(l-r)^{2} d^{2} \cos ^{2} \alpha-2 e r^{2}(l-r) d \cos \alpha=d^{2} \sin ^{2} \alpha\left[e^{2} r^{2}-(l-r)^{2}\right] \\
\text { or } & e^{2} r^{4}+2 e d \cos \alpha r^{3}+\left(d^{2}-2 e d l \cos \alpha-e^{2} d^{2} \sin ^{2} \alpha\right)-2 l d^{2} r+d^{2} l^{2}=0,
\end{array}
$$

which is an equation of degree four in r, and its roots give the focal distances $r_{1}, r_{2}, r_{3}, r_{4}$ of four points of intersection of conic and circle. Hence, by theory of equation, we have

$$
\begin{align*}
& r_{1} r_{2} r_{3}+r_{2} r_{3} r_{4}+r_{1} r_{2} r_{4}+r_{3} r_{4} r_{1}=-\frac{\text { coeeficient of } r}{\text { coeeficient of } r^{4}}=\frac{2 l d^{2}}{e^{2}}, \tag{*}\\
& \text { and } \quad r_{1} r_{2} r_{3} r_{4}=\frac{\text { coeeficient of } r^{0}}{\text { coeeficient of } r^{4}}=\frac{d^{2} l^{2}}{e^{2}}, \tag{**}
\end{align*}
$$

The relation $\left({ }^{* *}\right)$ gives part (i). Diving the relation $\left({ }^{*}\right)$ by $\left({ }^{* *}\right)$, we get

$$
\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{r_{4}}=\frac{2}{l}
$$

Exercises

Q1. If $P S P^{\prime}$ and $Q S Q^{\prime}$ are two perpendicular focal chord of a conic, then prove that $\frac{1}{P S . S P^{\prime}}+\frac{1}{Q S . S Q^{\prime}}$ is constant.
Q2. A chord $P Q$ of a conic whose eccentricity is e and semi-latus rectum l subtends a right angle at the focus S, show that

$$
\left(\frac{1}{S P}-\frac{1}{l}\right)^{2}+\left(\frac{1}{S Q}-\frac{1}{l}\right)^{2}=\frac{e^{2}}{l^{2}}
$$

Q3. Prove that the perpendicular focal chords of a rectangular hyperbola are equal.
(Hint: For a rectangular hyperbola, eccentricity $e=\sqrt{2}$.)
Q4. Determine the nature, latus-rectum and eccentricity of the following conics:
(i) $\frac{15}{r}=3-4 \cos \theta$
(ii) $\frac{3}{r}=2+\sqrt{3} \cos \theta+\sin \theta$

Q5. Find the point on the conic $\frac{14}{r}=3-8 \cos \theta$, whose radius vector is 2 .

