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Module 2: Polar Equation of Conics

1 Polar Coordinates

Figure 1: Polar Coordinate

In a plane, we can determine the position of a point
P with respect to a fixed point O, called the pole,
and a fixed straight line OX, called the initial line.
We join P to O. If the length of OP is r and ∠XOP
(which is traced out by the line OP in revolving from
the initial line OX) is θ, then the polar coordinates
of P is given by (r, θ). Here, r is called the radius
vector and θ is called the vectorial angle of the
point P (see Figure 1).

The radius vector r is positive if it is measured
from the origin along the line bounding the vectorial angle; if measured in the opposite direction
it is negative. The vectorial angle θ is positive, if it is measured in anti-clockwise direction
from OX and it is negative, if is measured in clockwise direction from OX.

Figure 2: Different representations of
polar coordinates of a point

The polar coordinates of a point are not unique as
in the Cartesian coordinates (see Figure 2). Adding
2π (or any multiple of 2π) to the vectorial angle does
not alter the final position of the revolving line, so
(r, θ) is always same point as (r, θ + 2nπ), where n is
an integer. Also, adding π or any odd multiple of π
to the vectorial angle and changing the sign of radius
vector gives the same point as before. Thus, the point
(−r, θ + (2n+ 1)π) is the same point as (−r, θ + π),
i.e., is the point (r, θ).

If PO is produced to P ′ so that OP = OP ′ in
magnitude, then the the coordinates of P ′ are either
(r, θ + π) or (−r, θ).

In general, taking into consideration the signs of
polar coordinates (as discussed above), it is easy to see that the same point is represented by
each of the following polar coordinates:
(r, θ), (−r, θ + π), (r,−(2π − θ)) , (−r,−(π − θ)).

Now, we are going to present some results regarding polar coordinates which would be used
in upcoming sections.
(i) Relation between Cartesian and Polar Coordinates:

Figure 3: Cartesian and Polar Coordi-
nate

Let P be any point whose Cartesian coordinates,
referred to rectangular axes, are (x, y), and whose po-
lar coordinates, referred toO as pole andOX as initial
line, are (r, θ). Then, OP = r and ∠MOP = θ.

Draw PM perpendicular from P to OX, so that
we have OM = x,MP = y (see Figure 3).

From 4MOP , we have

PM

OP
= sin θ and

OM

OP
= cos θ
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or
y

r
= sin θ and

x

r
= cos θ

which gives
x = r cos θ and y = r sin θ. (1.1)

and hence, r2 = x2 + y2 and tan θ = y
x
, that is,

r =
√
x2 + y2 and θ = arctan

(y
x

)
. (1.2)

Using equations (1.1) and (1.2), we can transform the polar coordinates into the Cartesian
coordinates and vice versa.
(ii) Distance between two points whose polar coordinates are given:

Figure 4: Distance between two given
points

Let P1 and P2 be two given points and let
their polar coordinates be (r1, θ1) and (r2, θ2) respec-
tively, so that, OP1 = r1, OP2 = r2,∠XOP1 =
θ1 and ∠XOP2 = θ2, where O is the pole and OX
is the initial line. Then ∠P1OP2 = θ2 − θ1.

Using cosine rule in the triangle OP1P2 we have
(see Figure 4)

cos∠P1OP2 =
OP 2

1 +OP 2
2 − P1P

2
2

2OP1 ·OP2

=
r21 + r22 − P1P

2
2

2r1r2
,

which gives P1P
2
2 = r21 + r22 − 2r1r2 cos(θ2 − θ1).

Therefore, the required distance between the
points is given by

P1P2 =
√
r21 + r22 − 2r1r2 cos(θ2 − θ1) (1.3)

(iii) Polar equation of a straight line:
We know that the general equation of a straight line in rectangular Cartesian coordinate

system can be written as
ax+ by = l.

Taking the origin as the pole and the positive x-axis as the initial line, the above equation, in
polar coordinates (using transformation equation (1.1)), becomes

l

r
= a cos θ + b sin θ. (1.4)

If the straight line passes through the pole, then l = 0 and (1.4) becomes a cos θ + b sin θ = 0.
Above equation (1.4) is called the general equation of a straight line in polar coordinates.

It can also be written as
r cos(θ − α) = p,

where cosα = a/
√
a2 + b2, sinα = b/

√
a2 + b2 and p = l/

√
a2 + b2.

Parallel and perpendicular lines: Since ax + by = l and ax + by = l′ represent parallel
lines, therefore the lines

l

r
= a cos θ + b sin θ and

l′

r
= a cos θ + b sin θ

represent parallel lines in polar coordinates.
Again, since the line bx− ay = l′ is perpendicular to the line ax+ by = l, the line perpen-

dicular to the line
l

r
= a cos θ + b sin θ

3
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is given by
l′

r
= b cos θ − a sin θ or

l′

r
= a cos

(
θ +

π

2

)
+ b sin

(
θ +

π

2

)
.

Therefore, the equation of any line perpendicular to the line (1.4) is obtained by writing
(
θ + π

2

)
for θ and changing l to a new constant L.
(iv) Polar Equation of a straight line in normal form:

Figure 5: Straight line in normal form

Let p be the length of the perpendicular OM from
the origin to the straight line, and let α be the angle
which this perpendicular makes with the initial line
OX as shown in Figure 6. Let P (r, θ) be any point
on the required line. Then OP = r,∠XOP = θ. In
triangle 4OPM ,

OP = r,∠POM = α− θ, OM = p.

Now,

cos∠POM =
OM

OP
or, cos(α− θ) =

p

r
,

which gives cos(θ − α) = p
r
.

Therefore, the required equation of straight line is

r cos(θ − α) = p. (1.5)

Particular Cases:
Case (i). If the straight passes through the pole, then p = 0 and the equation (1.5) reduces
to r cos(θ − α) = 0 or, θ = constant.
Case (ii). If the straight line is perpendicular to the initial line, then α = 0 and the equation
of line reduces to r cos θ = p.
Case (iii). If the straight line is parallel to the initial line and is above it, then α = π/2 and
the equation of line reduces to r sin θ = p.
Case (iv). If the straight line is parallel to the initial line and is below it, then α =
−π/2 or 3π/2 and the equation of line reduces to r sin θ = −p.
(v) Area of the triangle whose vertices have polar coordinates (ri, θi), i = 1, 2, 3.

Figure 6: Area of a triangle with
given vertices

Let P1P2P3 be a triangle whose vertices have polar
coordinates (ri, θi), i = 1, 2, 3 taken in order as shown in
Figure 6. Then, we have OP1 = r1, OP2 = r2, OP3 = r3
and ∠XOP1 = θ1,∠XOP2 = θ2,∠XOP3 = θ3.

∴ ∠P1OP2 = θ2 − θ1,∠P2OP3 = θ3 − θ2 and
∠P1OP3 = θ3 − θ1.

Now, we have (see Figure 6)

area of 4P1P2P3 = area of 4OP1P2 + area of 4OP2P3

−area of 4OP1P3

But,

area of 4OP1P2 =
1

2
OP1 ·OP2 sinP1OP2

=
1

2
r1r2 sin(θ2 − θ1).
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Similarly, area of 4OP2P3 = 1
2
r2r3 sin(θ3 − θ2) and area of 4OP1P3 = 1

2
r1r3 sin(θ3 − θ1).

Therefore,

area of 4P1P2P3 =
1

2
r1r2 sin(θ2 − θ1) +

1

2
r2r3 sin(θ3 − θ2)−

1

2
r1r3 sin(θ3 − θ1)

=
1

2
(r1r2 sin(θ2 − θ1) + r2r3 sin(θ3 − θ2) + r3r1 sin(θ1 − θ3)) . (1.6)

(vi) Polar Equation of a straight line passing through two given points:
Let A(r1, θ1) and B(r2, θ2) be two given points and P (r, θ) be any point on the line joining

the points A and B.
Now, the three points A,P and B lie on a straight line, the area of the triangle APB is

zero (see Figure 7).
∴ r1r2 sin(θ2− θ1) + rr1 sin(θ1− θ) + rr2 sin(θ− θ2) = 0 (using equation (1.6))

=⇒ r1r2 sin(θ2 − θ1) = rr1 sin(θ − θ1) + rr2 sin(θ2 − θ).

Figure 7: Straight line through two given points

Dividing both sides by rr1r2, we get

sin(θ2 − θ1)
r

=
sin(θ − θ1)

r2
+

sin(θ2 − θ)
r1

(1.7)

Equation (1.7) is the required equation of the straight line. One might reach to same result
by noting that, area of 4AOB = area of 4AOP + area of 4POB.
(vii) Polar Equation of a Circle:

Let the radius of the circle be a and C(c, α) be its center. Take an arbitrary point P (r, θ)
on the circle. Then we have OC = c,∠XOC = α,OP = r,∠XOP = θ.
∴ ∠POC = θ − α.

Figure 8: Circle with center (C, α) and radius a
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Using cosine formula in 4OPC, we have

cos∠POC =
OP 2 +OC2 − PC2

2OP ·OC

cos(θ − α) =
r2 + c2 − a2

2rc

Therefore, the equation of required circle is

r2 + c2 − 2rc cos(θ − α) = a2. (1.8)

Particular cases:
Case (i). If the circle passes through the pole, then we have c = a and the equation (1.8)
reduces to

r = 2a cos(θ − α).

Case (ii). If the center of the circle lies on the initial line, then we have α = 0 and the equation
(1.8) reduces to

r2 − 2rc cos θ + c2 − a2 = 0.

Case (iii). If the pole be on the circle and also the initial line pass through the center of the
circle, then c = a and α = 0. In this case, the equation of circle reduces to

r = 2a cos θ.

2 Polar Equation of Conics

2.1 Polar Equation of a Conic

(1) To find the polar equation of a conic with its latus rectum of length 2l, ec-
centricity e and the focus being the pole:

Figure 9: Conic: l
r

= 1 + e cos θ

Let S be the focus of the conic which is being taken
as the pole. Let ZM be the directrix and A be the
vertex of the conic. Draw a perpendicular SZ from
S to the directrix, and take SZ (axis of conic) as the
positive direction of the initial line.

Let SLS ′ be the latus rectum of length 2l so that
the semi-latus rectum SL = l, and let e be the eccen-
tricity of the conic.

Take any point P (r, θ) on the conic. Then SP = r
and ∠XSP = θ.

Draw perpendiculars PM and LT to the directrix
from P and L, respectively. Also, draw perpendicular
PN from P to the initial line (axis). Then, we have
PM = NZ and LT = SZ (see Figure 9).

Since the points P and L are on the conic, therefore by the definition of a conic, we have

SP = e · PM and SL = e · LT (2.1)

From the first relation in above equation, we have

SP = e ·NZ = e · (SZ − SN)

= e · SZ − e · SP cos θ

or r = e · SZ − er cos θ

6
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which gives
r(1 + e cos θ) = e · SZ (2.2)

But using second relation in equation (2.1), we have

SL = e · SZ or l = e · SZ

Substituting this in (2.1), we get
r(1 + e cos θ) = l

Hence the polar equation of the conic is

l

r
= 1 + e cos θ. (2.3)

If the distance SZ between the focus S and the fixed line ZM is d, then l = ed and the above
equation of the conic can be written as

ed

r
= 1 + e cos θ.

Figure 10: Conic: l
r

= 1− e cos θ

Remark 1: In the above derivation, we have taken
SZ (the direction directed from the focus towards the
directrix) as the positive direction of the initial line.
However, if we take the positive direction of the initial
line as ZS, that is, opposite to the direction directed
from the focus towards the directrix (see Figure 10),
then the equation of the conic comes out to be

l

r
= 1− e cos θ (2.4)

In this case,

SP = e ·MP = e · ZN = e · (ZS + SN)

= e · (TL+ SP cos θ) = e · LT + e · SP cos θ

This gives

r = l + er cos θ or
l

r
= 1− e cos θ.

Corollary 1: If the conic is a parabola with latus rectum 4a, then e = 1 and l = 2a, and the
equation (2.3) takes the form

2a

r
= 1 + cos θ = 2 cos2

θ

2
or r = a sec2

θ

2
. (2.5)

Corollary 2: If α be the vectorial angle of a point A on conic l
r

= 1 + e cos θ, then the radius
vector of A, say rA, will satisfy l

rA
= 1 + e cosα, which gives rA = l

1+e cosα
, and therefore, the

polar coordinates of point A may be written as
(

l
1+e cosα

, α
)
. This is also called the point ′α′.

7



Na
vin

Ku
ma

r J
ha

(2) To find the polar equation of a conic with its focus being the pole and its axis
inclined at an angle α to the initial line:

Figure 11: Conic: l
r

= 1 + e cos(θ − α)

Let S be the focus coinciding with the pole
and let SZ, the axis of the conic, be inclined at
an angle α to the initial line SX.

Consider a point P (r, θ) on the conic. Draw
perpendiculars PM and PN from P on the di-
rectrix ZM and the axis SZ respectively.

Let SL(= l) be the semi-latus rectum of the
conic and LT (= SZ) be the perpendicular from
L to the directrix ZM (see Figure 11).

By the definition of a conic, we have

SP = e · PM
= e ·NZ (∵ PM = NZ)

= e · (SZ − SN) = e · SZ − e · SN
= e · LT − e · SP cos(θ − α)

(∵ SZ = LT and SN = SP cos(θ − α))

or SP · (1 + e cos(θ − α)) = e · LT = SL

This gives the required equation of conic as

r (1 + e cos(θ − α)) = l or
l

r
= 1 + e cos(θ − α), (2.6)

Note: Any result for the conic (2.6) can be obtained from the corresponding result for the
conic (2.3) by replacing θ by θ − α., i.e., by writing θ − α for θ, β − α for β etc.
Particular Cases:
Case 1. If the axis SZ of the conic coincides with the initial line (that is, α = 0), then its
equation becomes l

r
= 1 + e cos θ, which we have derived earlier as equation (2.3).

Case 2. If the positive direction of the axis is opposite to the that of the initial line (that is,
α = π), then the equation of the conic becomes l

r
= 1− e cos θ, (see Remark 1).

2.2 Equations of the Directrices of a conic

To find the polar equation of the directrices of the conic l
r

= 1 + e cos θ.
Case 1. When conic is an ellipse:

Let S be the focus coinciding with the pole and ZM be the directrix of ellipse corresponding
to the focus S. Let P (r, θ) be any point on the directrix ZM . Then SP = r and ∠ZSP = θ.

From 4PSZ (see Figure 12(a)), we have

SZ

SP
= cos θ or SZ = SP cos θ = r cos θ

But, L being a point on ellipse, we have

SL = e · LT = e · SZ or SZ =
SL

e
=
l

e

Therefore,

r cos θ =
l

e
or

l

r
= e cos θ, (2.7)

8
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which is the required equation of the directrix ZM .
To obtain the equation of other directrix Z ′M ′ corresponding to the focus S ′ (other than

the pole S), we consider any point P ′(r′, θ′) on it. Then SP ′ = r′ and ∠ZSP ′ = θ′, and
therefore, ∠Z ′SP ′ = π − θ′.

From 4P ′SZ ′,

SZ ′ = SP ′ cos(π − θ′) or SZ ′ = −r′ cos θ′. (*)

But in case of an ellipse

l =
b2

a
=
a2(1− e2)

a
= a(1− e2)

and therefore

SZ ′ = ZZ ′ − SZ =
2a

e
− l

e
=

2l

e(1− e2)
− l

e
= −

(
e2 + 1

e2 − 1

)
l

e
.

Putting this value of SZ ′ in (*) above, we get

r cos θ =

(
e2 + 1

e2 − 1

)
l

e
or

l

r
=

(
e2 − 1

e2 + 1

)
e cos θ, (2.8)

which is the required equation of the directrix Z ′M ′.

(a) Directrices of an ellipse l
r = 1+ e cos θ. (b) Directrices of a hyperbola

l
r = 1 + e cos θ.

(c) Directrix of a
parabola l

r = 1+cos θ.

Figure 12: Directrices of a conic.

Case 2. When conic is a hyperbola:
Let ZM and Z ′M ′ be the directrices of hyperbola corresponding to foci S (which is also
the pole) and S ′ respectively. Proceeding in same manner as described in Case 1 above, the
equation of ZM is obtained and is given by

l

r
= e cos θ (1)

For the equation of directrix Z ′M ′, take P ′(r′, θ′) on it. Then SP ′ = r′,∠Z ′SP ′ = θ′.
From 4P ′SZ ′ (see Figure 12(b)),

SZ ′ = SP ′ cos θ′or SZ ′ = r′ cos θ′. (**)

But, in case of a hyperbola

l =
b2

a
=
a2(e2 − 1)

a
= a(e2 − 1)

9
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and therefore

SZ ′ = SZ + ZZ ′ =
l

e
+

2a

e

=
l

e
+

2l

e(e2 − 1)
=

(
e2 + 1

e2 − 1

)
l

e
.

Putting this value of SZ ′ in (**) above, we get

r cos θ =

(
e2 + 1

e2 − 1

)
l

e
or

l

r
=

(
e2 − 1

e2 + 1

)
e cos θ, (2)

which is the required equation of the directrix Z ′M ′.
(Note that the equations of directrices in case of ellipse and hyperbola are same.)

Case 3. When conic is a parabola:
In this case, we have a unique focus S and only one directrix ZM . Let P (r, θ) be a point on ZM .
Then SP = r and ∠ZSP = θ. We have, SZ = SP cos θ = r cos θ. Also, SZ = LT = SL = l.
This gives, r cos θ = l and therefore the equation of directrix ZM is given by

l

r
= cos θ.

Solved Examples

1: Show that the equations l
r

= 1 + e cos θ and l
r

= −1 + e cos θ represent the same conic.
Sol.: The equations of given conics are

l

r
= 1 + e cos θ (1)

and
l

r
= −1 + e cos θ. (2)

Let P (r1, θ1) be a point on the conic (1). Since the point (r1, θ1) can also be written as
(−r1, π + θ1), therefore it also lies on (1) and so, we have

l

−r1
= 1 + e cos(π + θ1)

=⇒ − l

r1
= 1− e cos θ1 =⇒ l

r1
= −1 + e cos θ1,

which shows the point P (r1, θ1) lies on the conic (2).
Again, if (r′, θ′) is a point on (2), then

l

r′
= −1 + e cos θ′

=⇒ − l

r′
= 1− e cos θ′ =⇒ l

−r′
= 1 + e cos(π + θ′)

which shows that the point (−r′, π + θ′) lies on conic (1). But the point (r′, θ′) is same as
the point (−r′, π + θ′). So, (r′, θ′) also lies on conic (1).

Thus, we have shown that each point on conic (1) also lies on conic (2), and vice versa, and
therefore, conics represented by (1) and (2) are same.

10



Na
vin

Ku
ma

r J
ha

2: In a conic, prove the following:
(i) the sum of the reciprocals of the segments of any focal chord of conic is constant.
(ii) the sum of the reciprocals of two perpendicular focal chords is constant.

Sol.: Let the equation of the conic be

l

r
= 1 + e cos θ. (1)

(i) Let PSP ′ be any focal chord of conic such that the vectorial angle of P is α. Then the
vectorial angle of P ′ is π + α. Thus the polar coordinates of P and P ′ are (SP, α) and
(SP ′, π + α) respectively (see Figure (a) below).

(a) Focal chord PSP ′ of conic (b) Perpendicular focal chords PSP ′ and
QSQ′ of conic

Since P and P ′ both lie on the conic, we have

l

SP
= 1 + e cosα and

l

SP ′ = 1 + e cos(π + α) = 1− e cosα.

This gives
l

SP
+

l

SP ′ = 2 or
1

SP
+

1

SP ′ =
2

l
= a constant,

which implies that the sum of the reciprocals of the segments of any focal chord of conic is
constant. The above result can also be expressed as ”the semi-latus rectum is the harmonic
mean between the segments of a focal chord.”
(ii) Let PSP ′ and QSQ′ be two perpendicular focal chords of conic (see Figure (b) above).
Then the vectorial angles of Q,P ′ and Q′ are π

2
+ α, π + α and 3π

2
+ α respectively.

Since P,Q, P ′ and Q′ lie on conic, we have

l

SP
= 1 + e cosα,

l

SQ
= 1 + e cos

(π
2

+ α
)

= 1− e sinα,

l

SP ′ = 1 + e cos(π + α) = 1− e cosα,
l

SQ′ = 1 + e cos

(
3π

2
+ α

)
= 1 + e sinα

This gives

SP =
l

1 + e cosα
, SQ =

l

1− e sinα
, SP ′ =

l

1− e cosα
, SQ′ =

l

1 + e sinα

11
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Therefore,

PP ′ = SP + SP ′ =
l

1 + e cosα
+

l

1− e cosα
=

2l

1− e2 cos2 α

QQ′ = SQ+ SQ′ =
l

1− e sinα
+

l

1 + e sinα
=

2l

1− e2 sin2 α

which shows that

1

PP ′ +
1

QQ′ =
1− e2 cos2 α

2l
+

1− e2 sin2 α

2l
=

2− e2

2l
= a constant.

3: Prove that the locus of middle points of focal chords of a conic is a conic of the same type.
Sol.: Let PSQ be a focal chord of the conic

l

r
= 1 + e cos θ, (1)

and α be the vectorial angle of P , then the vectorial angle of Q will be π + α.

Since P and Q lie on the conic (1), we have

l

SP
= 1 + e cosα and

l

SQ
= 1 + e cos(π + α) = 1− e cosα. (2)

Let R(r′, θ′) be the middle point of the focal chord PSQ, then from Figure (13), θ′ = α and

r′ = SR = SP − PR = SP − SP + SQ

2
=
SP − SQ

2

=
1

2

[
l

1 + e cosα
− l

1− e cosα

]
= − le cosα

1− e2 cos2 α
. (using (2) )

Therefore,

r′ = − le cos θ′

1− e2 cos2 θ′
.

Hence, the locus of R(r′, θ′) is the curve

r = − le cos θ

1− e2 cos2 θ
, i.e., r2(1− e2 cos2 θ) + ler cos θ = 0.

Transforming the above equation to Cartesian coordinates, we have

x2 + y2 − e2x2 + lex = 0 or (1− e2)x2 + y2 + lex = 0, (3)

which being a second degree equation in x and y represents a conic.

The equation (3) represents an ellipse, a parabola or a hyperbola according as

02 − (1− e2) <,= or > 0, that is, e <,= or > 1.

Thus, the conic (3) is of the same type as the given conic (1).

4: If PSQ and PS ′R be two chords of an ellipse through the foci S and S ′, then prove that
PS
SQ

+ PS′

S′R
is independent of the position of point P .

Sol.: Let the equation of the ellipse, with focus S being the pole, be

l

r
= 1 + e cos θ. (1)

12
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Let α be the vectorial angle of P , then the vectorial angle of Q will be π + α. Since P and
Q lie on the conic (1), we have

l

SP
= 1 + e cosα and

l

SQ
= 1 + e cos(π + α) = 1− e cosα.

This gives

1

SP
+

1

SQ
=

1 + e cosα

l
+

1− e cosα

l
=

2

l
or

SP

SQ
=

2

l
SP − 1. (2)

Figure 13:
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Similarly, for the focal chord PS ′R, we have

S ′P

S ′R
=

2

l
S ′P − 1. (3)

Adding (2) and (3), we get

SP

SQ
+
S ′P

S ′R
=

2

l
(SP + S ′P )− 2.

But for an ellipse, SP + S ′P = 2a = length of major axis, therefore

PS

SQ
+
PS ′

S ′R
=

2

l
(2a)− 2 =

4a

l
− 2 = a constant independent of α i.e. the position of P .

5: A point P moves, so that the sum of its distance from two fixed points S and S ′ is constant
and equal to 2a. Show that P lies on the conic

a(1− e2)
r

= 1− e cos θ

referred to S as pole and SS ′ as initial line, SS ′ being equal to 2ae.
Sol.: Taking S as pole and SS ′ as initial line, let the polar coordinates of point P be (r, θ).
Then SP = r and ∠S ′SP = θ.

Given that SS ′ = 2ae and SP + S ′P = 2a, from 4SPS ′ in Figure (15), we have

cos θ =
SP 2 + SS ′2 − S ′P 2

2SP · SS ′

=
r2 + (2ae)2 − (2a− r)2

2r(2ae)

=
r2 + 4a2e2 − 4a2 − r2 + 4ar

4rae
=
a(e2 − 1) + r

re

∴ e cos θ = 1 +
a(e2 − 1)

r
or

a(1− e2)
r

= 1− e cos θ,

which is the required locus of P and is a conic.
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6: A circle of diameter d passing through the focus of a conic, whose latus rectum is 2l, meets
the conic in four points whose distances from the focus are r1, r2, r3, r4, then prove that

(i) r1r2r3r4 =
d2l2

e2
, (ii)

1

r1
+

1

r2
+

1

r3
+

1

r4
=

2

l
.

Sol.: Taking the focus as pole and the axis of conic as initial line, the equation of conic is

l/r = 1 + e cos θ. (1)

The equation of the circle passing through the focus may be taken as

r = d cos(θ − α) = d(cos θ cosα + sin θ sinα), (2)

where d is the diameter of the circle and α is the angle which the diameter through the pole
makes with the initial line. Eliminating θ from (1) and (2), we get

r = d

 l − r
er

cosα +

√
1−

(
l − r
er

)2

sinα


or

[
r − l − r

er
d cosα

]2
= d2 sin2 α

[
1−

(
l − r
er

)2
]

or e2r4 + (l − r)2d2 cos2 α− 2er2(l − r)d cosα = d2 sin2 α
[
e2r2 − (l − r)2

]
or e2r4 + 2ed cosαr3 + (d2 − 2edl cosα− e2d2 sin2 α)− 2ld2r + d2l2 = 0,

which is an equation of degree four in r, and its roots give the focal distances r1, r2, r3, r4
of four points of intersection of conic and circle. Hence, by theory of equation, we have

r1r2r3 + r2r3r4 + r1r2r4 + r3r4r1 = − coeeficient of r

coeeficient of r4
=

2ld2

e2
, (∗)

and r1r2r3r4 =
coeeficient of r0

coeeficient of r4
=
d2l2

e2
, (∗∗)

The relation (**) gives part (i). Diving the relation (*) by (**), we get

1

r1
+

1

r2
+

1

r3
+

1

r4
=

2

l
.

Exercises

Q1. If PSP ′ and QSQ′ are two perpendicular focal chord of a conic, then prove that
1

PS.SP ′ + 1
QS.SQ′ is constant.

Q2. A chord PQ of a conic whose eccentricity is e and semi-latus rectum l subtends a right
angle at the focus S, show that(

1

SP
− 1

l

)2

+

(
1

SQ
− 1

l

)2

=
e2

l2
.

Q3. Prove that the perpendicular focal chords of a rectangular hyperbola are equal.
(Hint: For a rectangular hyperbola, eccentricity e =

√
2.)

Q4. Determine the nature, latus-rectum and eccentricity of the following conics:
(i)15

r
= 3− 4 cos θ (ii) 3

r
= 2 +

√
3 cos θ + sin θ

Q5. Find the point on the conic 14
r

= 3− 8 cos θ, whose radius vector is 2.
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