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Maxwell’s Thermodynamic Relations 

 

From first law of thermodynamics 

WdUQ    

pdVQdU                                                                                                (1) 

From second law of thermodynamics 

  TdSQ                                                                                                     (2) 

Combining Eqs. (1) and (2), we get 

  pdVTdSdU            (3) 

Eqn. (3) is known as Gibb’s Equation. It involves only point functions p, V, T, S and 

U and also these are perfect (exact) differential. 

 Considering U, S and V to be the function of any two independent variables x 

and y 

U=U(x, y),    S=S(x, y),    V=V(x, y) 

Thus 
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On substituting these values of dU, dS and dV in Eqn. (3), we get 
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Comparing Coefficients of dx and dy on both sides 
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Since U, V and S are perfect differentials of x and y, we must have 
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The differentiating partially to Eq. (5a) w.r.t. y and Eq (5b) with respect to x 

and then using Eq. (6), we get  
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Equation (7) is the general expression for Maxwell’s thermodynamic relations 

in terms of x and y. The four Maxwell’s relations can be deduced with the help of 

this equation by taking x and y as any of the two variables from set p, V, T and S. It 

is preferable to take one thermal (S or T) and one mechanical variable (V or p). Thus 

the possible pairs (i) x=S and y=V;(ii)  x=S and y=p; (iii) x=T and  y=V;  (iv) x=T, y=p  

leads to the four Maxwell’s relations. 

Case-1: Taking  x=S, y=V,  we have  0
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and Eq. (7) gives 
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Eq. (8) gives first Maxwell’s Thermodynamic relation. 

Case-2: Taking  x=S, y=p,  we have  0
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and Eq. (7) gives 
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Eq. (9) gives second Maxwell’s Thermodynamic relation. 



Case-3: Taking  x=T, y=V,  we have  0
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and Eq. (7) gives 
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Eq. (10) gives Third Maxwell’s Thermodynamic relation. 

Case-4: Taking  x=T, y=p,  we have  0
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and Eq. (7) gives 
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Eq. (11) gives fourth Maxwell’s Thermodynamic relation. 

Equations (8) –(11) are four Maxwell’s Thermodynamic relations. 

Note: Also there are two more relations x & y taken as p & V (Mechanical variables) 

or T&S (Thermal variables). 

1. If  x=p, y=V,  we have  0
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2. If  x=T, y=S,  we have  0
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Eqs. (13 & 14) are known as Maxwell’s Identities. 



Thermodynamic Functions or Potentials 

The properties of a four substances can conveniently be represented in terms 

of four functions, Internal energy (U), Enthalpy (H), Helmholtz function (F) and 

Gibb’s function (G). 

 Internal energy (U), Enthalpy (H), Helmholtz function (F) and Gibb’s function 

(G) are called thermodynamic potentials of the system because the thermodynamic 

variables p, V, T and S can be obtained by differentiating them w. r. t. the 

independent quantities related to them. It is analogous to the intensity of  a field 

which can be obtained by the space differentiation of related potential. 

 

(i) Internal energy (U) : According to first and second law of thermodynamics, 

the change in internal energy 

 dU= WQ                                  

 dU= pdVTdS                                                                     (1) 

Physically, dU is increment in energy of a system, if that much adiabatic work 

is done on it. Internal energy is the quantity of energy in a system which remains 

constant during an adiabatic - isochoric process. 

 

(ii) Enthalpy (H): It is a property of thermodynamic system given by the 

mathematical expression 

 H=U+pV 

This is known as total heat function (energy function). 

Change in Enthalpy, 

                 dH=dU+pdV+Vdp 

      =TdS-pdV+pdV+Vdp                        (since dU= pdVTdS  ) 

 dH=TdS+Vdp        (2) 



Physically Enthalpy is the quantity of energy in a system which remains constant 

during the throttling process (adiabatic-isobaric process). 

 

(iii) Helmholtz-function (F): Helmholtz function is defined as  

F=U-TS 

Change in Helmholtz function 

  dF=dU-TdS-SdT 

    =TdS-pdV-TdS-SdT                              (since dU= pdVTdS  ) 

i.e.   dH=-pdV-SdT                     (3) 

Physically Helmholtz function is the quantity of energy in a system which remains 

constant during the isothermal-isochoric process. 

 Also for reversible isothermal process from Eq. (3) we get 

  dH=-pdV 

i.e. change in Helmholtz function during a reversible isothermal process is equal to 

the work done on the system. 

 

(iv) Gibb’s-function (G): Helmholtz function is defined as  

G=H-TS 

   =U+pV-TS 

Change in Gibb’s function 

  dG=dU+pdV+Vdp-TdS-SdT 

      =TdS+pdV+Vdp -pdV-TdS-SdT      (since dU= pdVTdS  ) 

i.e.   dG=Vdp-SdT                                (4) 

Physically Gibb’s function is the quantity of energy in a system which remains 

constant during the isothermal-isobaric process. From Equations (1-4) we also see 

that U=U(S, V); H=H(S, p); F=F(T, V) and G=G(T, p). 



Derivation of Maxwell’s Relations using Thermodynamic Potentials 

Since thermodynamic potentials U, H, F and G are point functions and their 

differentiations are exact differential. 

(i) Since 

 dU= pdVTdS                                (1) 

thus 
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 As U is perfect differential, we have  
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This is first Maxwell’s Thermodynamic relation. 

(ii)  Since 

 dH= VdPTdS                                (5) 

thus 
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 As H is perfect differential, we have  
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Thus Eqs. (6 & 7) gives  
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This is second Maxwell’s Thermodynamic relation. 

 

(iii). Since 

 dF=-SdT-pdV                                          (9) 

thus 
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 As F is perfect differential, we have  
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Thus Eqs. (10 & 11) gives  
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This is third Maxwell’s Thermodynamic relation. 

(iv). Since 

 dG=Vdp-SdT                              (13) 

thus 
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 As F is perfect differential, we have  
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Thus Eqs. (14 & 15) gives  
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This is fourth Maxwell’s Thermodynamic relation. 


