Udai Pratap (Autonomous) College, Varanasi

E-learning M aterial

M odule/ Lecture	$\mathbf{0 7}$
Topic	Applications of M axwell's Thermodynamic Relations
D eveloped by	Dr. D evendra K umar Singh Assistant Professor, Physics Department, Udai Pratap (A utonomous) College, V aranasi

Applications of M axwell's Thermodynamic Relations

1. TdS Equations

(i). Let $\mathrm{S}=\mathrm{S}(\mathrm{T}, \mathrm{V})$

Then $\quad d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V$
or $\quad T d S=T\left(\frac{\partial S}{\partial T}\right)_{V} d T+T\left(\frac{\partial S}{\partial V}\right)_{T} d V$
Since $\quad T d S=\delta Q$
Thus $\quad \mathrm{T}\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\left(\frac{\delta \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}}$,
Where C_{V} is the molar specific heat at constant volume.
Also from Maxwell's relation,

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \tag{3}
\end{equation*}
$$

Using Eqs. (2 \& 3) Eqn. (1) becomes

$$
\begin{equation*}
\mathrm{TdS}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \mathrm{dV} \tag{4}
\end{equation*}
$$

Eq. (4) is known as first TdS equation. This equation has the peculiarity that the coefficients of $d T$ and $d V$ on the RHS of the equation are at constant Volume.
(ii). Let $\quad S=S(T, p)$

Then $\quad \mathrm{dS}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \mathrm{dT}+\left(\frac{\partial \mathrm{S}}{\partial \mathrm{p}}\right)_{\mathrm{T}} \mathrm{dp}$
or $\quad T d S=T\left(\frac{\partial S}{\partial T}\right)_{p} d T+T\left(\frac{\partial S}{\partial p}\right)_{T} d p$
Since $\quad T d S=\delta Q$

Thus $\quad \mathrm{T}\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\left(\frac{\delta S}{\partial \mathrm{~T}}\right)_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}}$,
Where C_{p} is the molar specific heat at constant pressure.
Also from Maxwell's relation,

$$
\begin{equation*}
\left(\frac{\partial S}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{~T}}\right)_{\mathrm{p}} \tag{7}
\end{equation*}
$$

Using Eqs. (6 \& 7) Eqn. (5) becomes

$$
\begin{equation*}
\mathrm{TdS}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{p}} \mathrm{dp} \tag{8}
\end{equation*}
$$

Eq. (8) is known as second TdS equation.

2. Energy Equations

(i) According to M axwell's relation

$$
\begin{equation*}
\left(\frac{\partial \mathrm{S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \tag{1}
\end{equation*}
$$

But, according to $1^{\text {st }}$ and $2^{\text {nd }}$ Iaw of thermodynamics

$$
\begin{equation*}
\partial \mathrm{S}=\frac{\partial \mathrm{U}+\mathrm{p} \partial \mathrm{~V}}{\mathrm{~T}} \tag{2}
\end{equation*}
$$

From Eq. (1) and (2)

$$
\begin{align*}
& \frac{1}{\mathrm{~T}}\left(\frac{\partial \mathrm{U}+\mathrm{p} \partial \mathrm{~V}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \\
& \left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}+\mathrm{p}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \\
& \left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}-\mathrm{p} \tag{3}
\end{align*}
$$

This is first energy equation. It gives the change in internal energy of a gas with respect to change in volume at constant temperature.
(ii) According to M axwell's relation

$$
\left(\frac{\partial S}{\partial p}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

(4)

Using Eq. (2), Eq. (4) becomes,

$$
\begin{align*}
& \frac{1}{T}\left(\frac{\partial \mathrm{U}+\mathrm{p} \partial \mathrm{~V}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{~T}}\right)_{\mathrm{p}} \\
& \left(\frac{\partial \mathrm{U}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{p}}-\mathrm{p}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{p}}\right)_{\mathrm{T}} \tag{5}
\end{align*}
$$

This is second energy equation. It gives the change in internal energy of a gas with respect to change in pressure at constant temperature.

N ote: 1. For 1 mole of an ideal gas

$$
\mathrm{pV}=\mathrm{RT}
$$

thus $\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{\mathrm{R}}{\mathrm{V}}$
hence from $1^{\text {st }}$ energy equation

$$
\begin{aligned}
\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} & =\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}-\mathrm{p} \\
& =\frac{\mathrm{TR}}{\mathrm{~V}}-\mathrm{p} \\
& =0
\end{aligned}
$$

Thus if temperature remains constant, the internal energy of an ideal gas is independent of volume.

2. For 1 mole of an real gas

$$
\begin{array}{ll}
& \left(p+\frac{a}{V^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT} \\
\text { or } & \mathrm{p}=\frac{\mathrm{RT}}{\mathrm{~V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{~V}^{2}} \\
\text { and } & \left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}=\frac{\mathrm{R}}{\mathrm{~V}-\mathrm{b}}
\end{array}
$$

hence from 1st energy equation

$$
\begin{aligned}
\left(\frac{\partial U}{\partial V}\right)_{T} & =T\left(\frac{\partial p}{\partial T}\right)_{V}-p \\
& =\frac{T R}{V-b}-\frac{R T}{V-b}+\frac{a}{V^{2}} \\
& =\frac{a}{V^{2}}
\end{aligned}
$$

Which is a positive quantity, thus the internal energy of a real gas at constant temperature depends on the volume. $\mathrm{As}\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=+\mathrm{ve}$, the internal energy increases with the increase in volume.

3. Clausius-Clapeyron Equation

A substance can exist in three states solid, liquid and gas. Out of these three only two can co-exist. Whenever there is a change of state, the temperature remains constant as for as the change takes place.

The melting or boiling points of a substance vary with pressure. The relation showing how the melting and boiling points vary with pressure is known as Clausius-Clapeyron Equation or First latent heat equation.

From Maxwell's relation,

$$
\begin{align*}
& \left(\frac{\partial \mathrm{S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \tag{1}\\
& \mathrm{~T}\left(\frac{\partial \mathrm{~S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \\
& \left(\frac{\mathrm{~T} \partial \mathrm{~S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \quad \text { (from 2nd law, } \mathrm{T} \partial \mathrm{~S}=\partial \mathrm{Q} \text {) } \\
& \left(\frac{\partial \mathrm{Q}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \tag{2}
\end{align*}
$$

In Eq. (2)
$\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{V}}\right)_{\mathrm{T}}$ represent the quantity of heat absorbed or released per unit change in volume at constant temperature, therefore this heat absorbed or released is the latent heat L and change in volume must be due to change in the state. Considering a unit mass of substance and let volume changes from V_{1} to V_{2}

$$
\text { Thus } \quad \partial \mathrm{Q}=\mathrm{L} \text { and } \partial \mathrm{V}=\mathrm{V}_{2}-\mathrm{V}_{1}
$$

Hence Eq. (2)becomes

$$
\frac{\mathrm{L}}{\mathrm{~V}_{2}-\mathrm{V}_{1}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}
$$

Since $\left(\frac{\partial \mathbf{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$ is same throughout the liquid and vapor mixture span, we can write

$$
\begin{equation*}
\frac{\mathrm{dp}}{\mathrm{dT}}=\frac{\mathrm{L}}{\mathrm{~T}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)} \tag{3}
\end{equation*}
$$

Eq. (3) is known as Clausius-Clapeyron Equation or first latent heat equation.

Application:

1. Effect of pressure on melting points of solids:

When solid melts
(i) If $\mathrm{V}_{2}>\mathrm{V}_{1}$, e.g. wax, sulphur etc.

From Eq. (3),

$$
\frac{\mathrm{dp}}{\mathrm{dT}}=+\mathrm{ve}
$$

Thus melting point increases with increase in pressure and vice-versa.
(ii) If $\mathrm{V}_{2}<\mathrm{V}_{1}$, e.g. gallium, bismuth, ice etc

From Eq. (3),

$$
\frac{\mathrm{dp}}{\mathrm{dT}}=-\mathrm{ve}
$$

Thus melting point increases with decrease in pressure and vice-versa. E.g. ice melts at low temperature when pressure is increases.

2. Effect of pressure on boiling points of liquids:

Since $V_{2}>V_{1}$ always.
From Eq. (3),

$$
\frac{\mathrm{dp}}{\mathrm{dT}}=+\mathrm{ve}
$$

Thus boiling point increases with increase in pressure and vice-versa. As in case of Water boiling in pressure cooker the pressure increases to 2 times the atmospheric pressure and the boiling point of water increases to $125^{\circ} \mathrm{C}$.

4. Specific Heat Relations

Let entropy
$\mathrm{S}=\mathrm{S}(\mathrm{T}, \mathrm{V})$

$$
\begin{equation*}
\mathrm{dS}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \mathrm{dT}+\left(\frac{\partial \mathrm{S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \mathrm{dV} \tag{1}
\end{equation*}
$$

Multiplying both sides with T and dividing throughout by dT while holding p-constant, wefind

$$
\begin{equation*}
T\left(\frac{\partial S}{\partial T}\right)_{p}=T\left(\frac{\partial S}{\partial T}\right)_{V}+T\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} \tag{2}
\end{equation*}
$$

For one mole of gas

$$
\begin{aligned}
& T\left(\frac{\partial S}{\partial T}\right)_{p}=\left(\frac{\partial Q}{\partial T}\right)_{p}=C_{P}=\text { Molar specific heat at cons tan t pressure } \\
& T\left(\frac{\partial S}{\partial T}\right)_{V}=\left(\frac{\partial Q}{\partial T}\right)_{V}=C_{V}=\text { Molar specific heat at cons tan } t \text { Volume }
\end{aligned}
$$

And from maxwell's relation $\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$
Using these, Eq. (2) gives

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{T}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}} \tag{3}
\end{equation*}
$$

Equation (3) is known as specific heat equation.

N ote: 1. For 1 mole of an ideal gas

$$
\mathrm{pV}=R \mathrm{~T}
$$

thus $\quad\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{\mathrm{R}}{\mathrm{V}}$ and $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{\mathrm{R}}{\mathrm{p}}$ hence from Specific heat equation (3)

$$
\begin{align*}
C_{P}-C_{V} & =T \frac{R}{V} \frac{R}{p} \\
& =R \tag{4}
\end{align*}
$$

Equation (4) is known as Mayer's relation.

2. For 1 mole of an ideal gas

$$
\begin{aligned}
& \left(p+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \left(p+\frac{a}{V^{2}}\right)=\frac{R T}{V-b}
\end{aligned}
$$

thus $\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\frac{\mathrm{R}}{(\mathrm{V}-\mathrm{b})}$
and $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\frac{\left(\frac{\mathrm{R}}{\mathrm{V}-\mathrm{b}}\right)}{\left(\frac{\mathrm{RT}}{(\mathrm{V}-\mathrm{b})^{2}}-\frac{2 \mathrm{a}}{\mathrm{V}^{3}}\right)}$
hence from Specific heat equation (3)

$$
C_{P}-C_{V}=T \frac{R}{(V-b)} \frac{\left(\frac{R}{V-b}\right)}{\left(\frac{R T}{(V-b)^{2}}-\frac{2 a}{V^{3}}\right)}
$$

$$
\begin{equation*}
=\frac{R}{1-\frac{2 \mathrm{a}(\mathrm{~V}-\mathrm{b})^{2}}{\mathrm{RTV}^{3}}} \tag{6}
\end{equation*}
$$

Neglecting b in comparison to $(\mathrm{V}-\mathrm{b})^{2} \approx \mathrm{~V}^{2}$, hence from Eq. (6)

$$
\begin{align*}
& \mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{R}}{1-\frac{2 \mathrm{a}}{\mathrm{RTV}}} \\
& \mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}} \approx \mathrm{R}\left(1+\frac{2 \mathrm{a}}{\mathrm{RTV}}\right) \tag{7}
\end{align*}
$$

