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Applications of Maxwell’s Thermodynamic Relations 

 

1. TdS Equations 
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Where CV is the molar specific heat at constant volume. 

Also from Maxwell’s relation, 
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Using Eqs. (2 & 3) Eqn. (1) becomes 
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Eq. (4) is known as first TdS equation. This equation has the peculiarity 

that the coefficients of dT and dV on the RHS of the equation are at 

constant Volume. 
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Since QTdS    
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Where pC  is the molar specific heat at constant pressure. 

Also from Maxwell’s relation, 
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Using Eqs. (6 & 7) Eqn. (5) becomes 
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Eq. (8) is known as second TdS equation.  

 

2. Energy Equations 

(i) According to Maxwell’s relation 
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But, according to 1st and 2nd law of thermodynamics 
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From Eq. (1)  and (2) 
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This is first energy equation. It gives the change in internal energy of a gas 

with respect to change in volume at constant temperature. 

(ii) According to Maxwell’s relation 
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Using Eq. (2), Eq. (4) becomes, 
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This is second energy equation. It gives the change in internal energy of a gas 

with respect to change in pressure at constant temperature. 

Note: 1. For 1 mole of an ideal gas 
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Thus if temperature remains constant, the internal energy of an ideal gas is 

independent of volume. 

2. For 1 mole of an real gas 
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hence from 1st energy equation 
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Which is a positive quantity, thus the internal energy of a real gas at constant 

temperature depends on the volume. As ve
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3. Clausius-Clapeyron Equation 

A substance can exist in three states solid, liquid and gas. Out of these three 

only two can co-exist. Whenever there is a change of state, the temperature remains 

constant as for as the change takes place.  

The melting or boiling points of a substance vary with pressure. The relation 

showing how the melting and boiling points vary with pressure is known as 

Clausius-Clapeyron Equation or First latent heat equation. 

From Maxwell’s relation, 
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In Eq. (2) 
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Eq. (3) is known as Clausius-Clapeyron Equation or first latent heat equation.  

Application: 

1. Effect of pressure on melting points of solids: 

When solid melts  

(i) If V2>V1, e.g. wax, sulphur etc. 

From Eq. (3), 
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Thus melting point increases with increase in pressure and vice-versa. 

(ii) If V2<V1, e.g. gallium, bismuth, ice etc 

From Eq. (3), 
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Thus melting point increases with decrease in pressure and vice-versa. E.g. ice 

melts at low temperature when pressure is increases. 

2. Effect of pressure on boiling points of liquids: 

Since V2>V1 always. 

From Eq. (3), 

  
ve

dT
dp


   

Thus boiling point increases with increase in pressure and vice-versa. As in 

case of Water boiling in pressure cooker the pressure increases to 2 times the 

atmospheric pressure and the boiling point of water increases to 1250 C. 

4. Specific Heat Relations 

 

Let entropy    S=S(T, V) 

   
dV

V
SdT

T
SdS

TV





















                                                   (1) 

Multiplying both sides with T and dividing throughout by dT while holding 

p-constant, we find 
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 For one mole of gas 
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Using these, Eq. (2) gives 
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Equation (3) is known as specific heat equation. 

 
Note: 1. For 1 mole of an ideal gas 
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Equation (4) is known as Mayer’s relation. 

2. For 1 mole of an ideal gas 
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hence from Specific heat equation (3) 
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Neglecting b in comparison to 22 V)bV(  , hence from Eq. (6)   
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