Udai Pratap (Autonomous) College, Varanasi

E-learning Material

Module/ Lecture	07
Торіс	Applications of Maxwell's
	Thermodynamic Relations
Developed by	Dr. Devendra Kumar Singh
	Assistant Professor,
	Physics Department,
	Udai Pratap (Autonomous) College, Varanasi

Applications of Maxwell's Thermodynamic Relations

1. TdS Equations

(i). Let
$$S=S(T, V)$$

Then

$$d\mathbf{S} = \left(\frac{\partial \mathbf{S}}{\partial \mathbf{T}}\right)_{\mathbf{V}} d\mathbf{T} + \left(\frac{\partial \mathbf{S}}{\partial \mathbf{V}}\right)_{\mathbf{T}} d\mathbf{V}$$

or

$$TdS = T\left(\frac{\partial S}{\partial T}\right)_{V} dT + T\left(\frac{\partial S}{\partial V}\right)_{T} dV$$
⁽¹⁾

Since $TdS = \delta Q$

Thus
$$T\left(\frac{\partial S}{\partial T}\right)_{V} = \left(\frac{\delta S}{\partial T}\right)_{V} = C_{V}$$
, (2)

Where C_V is the molar specific heat at constant volume.

Also from Maxwell's relation,

$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{V}}\right)_{\mathrm{T}} = \left(\frac{\partial \mathbf{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}} \tag{3}$$

(5)

Using Eqs. (2 & 3) Eqn. (1) becomes

$$TdS = C_V dT + T \left(\frac{\partial p}{\partial T}\right)_V dV$$
(4)

Eq. (4) is known as first TdS equation. This equation has the peculiarity that the coefficients of dT and dV on the RHS of the equation are at constant Volume.

(ii). Let S=S(T, p)

Then

$$dS = \left(\frac{\partial S}{\partial T}\right)_{p} dT + \left(\frac{\partial S}{\partial p}\right)_{T} dp$$
$$TdS = T\left(\frac{\partial S}{\partial T}\right)_{p} dT + T\left(\frac{\partial S}{\partial p}\right)_{T} dp$$

or

Since $TdS = \delta Q$

Thus
$$T\left(\frac{\partial S}{\partial T}\right)_{p} = \left(\frac{\delta S}{\partial T}\right)_{p} = C_{p}$$
, (6)

Where C_p is the molar specific heat at constant pressure.

Also from Maxwell's relation,

$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{p}}\right)_{\mathrm{T}} = -\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathrm{p}} \tag{7}$$

Using Eqs. (6 & 7) Eqn. (5) becomes

$$TdS = C_{p}dT - T\left(\frac{\partial V}{\partial T}\right)_{p}dp$$
(8)

Eq. (8) is known as second TdS equation.

2. Energy Equations

(i) According to Maxwell's relation

$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{V}}\right)_{\mathrm{T}} = \left(\frac{\partial \mathbf{p}}{\partial \mathbf{T}}\right)_{\mathrm{V}} \tag{1}$$

But, according to 1st and 2nd law of thermodynamics

$$\partial S = \frac{\partial U + p \partial V}{T}$$
(2)

From Eq. (1) and (2)

$$\frac{1}{T} \left(\frac{\partial U + p \partial V}{\partial V} \right)_{T} = \left(\frac{\partial p}{\partial T} \right)_{V}$$

$$\left(\frac{\partial U}{\partial V} \right)_{T} + p = T \left(\frac{\partial p}{\partial T} \right)_{V}$$

$$\left(\frac{\partial U}{\partial V} \right)_{T} = T \left(\frac{\partial p}{\partial T} \right)_{V} - p$$
(3)

This is first energy equation. It gives the change in internal energy of a gas with respect to change in volume at constant temperature.

(ii) According to Maxwell's relation

$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{p}}\right)_{\mathrm{T}} = -\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathbf{p}} \tag{4}$$

Using Eq. (2), Eq. (4) becomes,

$$\frac{1}{T} \left(\frac{\partial U + p \partial V}{\partial p} \right)_{T} = - \left(\frac{\partial V}{\partial T} \right)_{p}$$
$$\left(\frac{\partial U}{\partial p} \right)_{T} = -T \left(\frac{\partial V}{\partial T} \right)_{p} - p \left(\frac{\partial V}{\partial p} \right)_{T}$$
(5)

This is second energy equation. It gives the change in internal energy of a gas with respect to change in pressure at constant temperature.

Note: 1. For 1 mole of an ideal gas

pV=RT thus $\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{R}{V}$

hence from 1st energy equation

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T \left(\frac{\partial p}{\partial T}\right)_{V} - p$$
$$= \frac{TR}{V} - p$$
$$= 0$$

Thus if temperature remains constant, the internal energy of an ideal gas is independent of volume.

2. For 1 mole of an real gas

$$(p + \frac{a}{V^2})(V - b) = RT$$

or

$$p = \frac{RT}{V-b} - \frac{a}{V^2}$$

 $\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{R}{V - b}$

and

hence from 1st energy equation

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V} - p$$
$$= \frac{TR}{V - b} - \frac{RT}{V - b} + \frac{a}{V^{2}}$$
$$= \frac{a}{V^{2}}$$

Which is a positive quantity, thus the internal energy of a real gas at constant temperature depends on the volume. As $\left(\frac{\partial U}{\partial V}\right)_T = +ve$, the internal energy increases with the increase in volume.

3. Clausius-Clapeyron Equation

A substance can exist in three states solid, liquid and gas. Out of these three only two can co-exist. Whenever there is a change of state, the temperature remains constant as for as the change takes place.

The melting or boiling points of a substance vary with pressure. The relation showing how the melting and boiling points vary with pressure is known as Clausius-Clapeyron Equation or First latent heat equation.

From Maxwell's relation,

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V}$$

$$T\left(\frac{\partial S}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V}$$

$$\left(\frac{T\partial S}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V}$$

$$\left(\frac{\partial Q}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V}$$

$$(from 2^{nd} law, T\partial S = \partial Q)$$

$$\left(\frac{\partial Q}{\partial V}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right)_{V}$$

$$(2)$$

or

In Eq. (2)

 $\left(\frac{\partial Q}{\partial V}\right)_{T}$ represent the quantity of heat absorbed or released per unit change in volume at constant temperature, therefore this heat absorbed or released is the latent heat L and change in volume must be due to change in the state. Considering a unit mass of substance and let volume changes from V₁ to V₂

Thus $\partial Q = L$ and $\partial V = V_2 - V_1$

Hence Eq. (2)becomes

$$\frac{L}{V_2 - V_1} = T \left(\frac{\partial p}{\partial T} \right)_V$$

Since $\left(\frac{\partial p}{\partial T}\right)_V$ is same throughout the liquid and vapor mixture span, we can write

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\mathrm{L}}{\mathrm{T}(\mathrm{V}_2 - \mathrm{V}_1)} \tag{3}$$

Eq. (3) is known as Clausius-Clapeyron Equation or first latent heat equation.

Application:

1. Effect of pressure on melting points of solids:

When solid melts

(i) If $V_2 > V_1$, e.g. wax, sulphur etc.

From Eq. (3),

$$\frac{\mathrm{d}p}{\mathrm{d}T} = +\mathrm{ve}$$

Thus melting point increases with increase in pressure and vice-versa.

(ii) If $V_2 < V_1$, e.g. gallium, bismuth, ice etc

From Eq. (3),

$$\frac{\mathrm{d}p}{\mathrm{d}T} = -\mathrm{ve}$$

Thus melting point increases with decrease in pressure and vice-versa. E.g. ice melts at low temperature when pressure is increases.

2. Effect of pressure on boiling points of liquids:

Since $V_2 > V_1$ always.

From Eq. (3),

$$\frac{\mathrm{d}p}{\mathrm{d}T} = +\mathrm{ve}$$

Thus boiling point increases with increase in pressure and vice-versa. As in case of Water boiling in pressure cooker the pressure increases to 2 times the atmospheric pressure and the boiling point of water increases to 125°C.

4. Specific Heat Relations

S=S(T, V)

Let entropy

$$d\mathbf{S} = \left(\frac{\partial \mathbf{S}}{\partial \mathbf{T}}\right)_{\mathbf{V}} d\mathbf{T} + \left(\frac{\partial \mathbf{S}}{\partial \mathbf{V}}\right)_{\mathbf{T}} d\mathbf{V}$$
(1)

Multiplying both sides with T and dividing throughout by dT while holding p-constant, we find

$$T\left(\frac{\partial S}{\partial T}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{V} + T\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}$$
(2)

For one mole of gas

$$T\left(\frac{\partial S}{\partial T}\right)_{p} = \left(\frac{\partial Q}{\partial T}\right)_{p} = C_{P} = \text{Molar specific heat at cons tan t pressure}$$
$$T\left(\frac{\partial S}{\partial T}\right)_{V} = \left(\frac{\partial Q}{\partial T}\right)_{V} = C_{V} = \text{Molar specific heat at cons tan t Volume}$$

And from maxwell's relation $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$

Using these, Eq. (2) gives

$$C_{P} - C_{V} = T \left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{P}$$
(3)

Equation (3) is known as specific heat equation.

Note: 1. For 1 mole of an ideal gas

pV=RT thus $\left(\frac{\partial p}{\partial T}\right)$

 $\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{R}{V} \text{ and } \left(\frac{\partial V}{\partial T}\right)_{p} = \frac{R}{p}$

hence from Specific heat equation (3)

$$C_{P} - C_{V} = T \frac{R}{V} \frac{R}{p}$$

$$= R$$
(4)

Equation (4) is known as Mayer's relation.

2. For 1 mole of an ideal gas

$$(p + \frac{a}{V^2})(V - b) = RT$$
$$(p + \frac{a}{V^2}) = \frac{RT}{V - b}$$

thus

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \frac{R}{(V-b)}$$

and

$$\left(\frac{\partial V}{\partial T}\right)_{p} = \frac{\left(\frac{R}{V-b}\right)}{\left(\frac{RT}{\left(V-b\right)^{2}} - \frac{2a}{V^{3}}\right)}$$
(5)

hence from Specific heat equation (3)

$$C_{P} - C_{V} = T \frac{R}{(V-b)} \frac{\left(\frac{R}{V-b}\right)}{\left(\frac{RT}{(V-b)^{2}} - \frac{2a}{V^{3}}\right)}$$

$$=\frac{R}{1-\frac{2a(V-b)^{2}}{RTV^{3}}}$$
(6)

Neglecting b in comparison to $(V - b)^2 \approx V^2$, hence from Eq. (6)

$$C_{P} - C_{V} = \frac{R}{1 - \frac{2a}{RTV}}$$

$$C_{P} - C_{V} \approx R(1 + \frac{2a}{RTV})$$
(7)