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Rectilinear flow of heat along a bar : Fourier Equation of heat flow 

  

Consider a long metal bar of uniform area of cross section ‘A’ heated at one 

end and heat flows along the length of bar. Suppose that the bas lies along x-axis 

whose origin lies at the hot end as shown in fig.1. 

 

 
Fig. 1. 

Let at a distance x from the hot end let   be the temperature above the 

surrounding and 
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The heat flowing per second into the element at M is 
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 Where K is the coefficient of thermal conductivity. 

Also, the heat flowing out per second from the element at N is  
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Thus the heat gained by the section MN per second 

  x
x

KAQQQ 2

2

21 



                     (3) 

Before the steady state is reached, the quantity of Q is used (i) partially to raise 

the temperature of the bar say, Qi and (ii) partially radiated out, say Qr, i.e. 

  ri QQQ            (4)  

 

Let 
t
  be the rate of rise of temperature of rod at section MN. The heat used 

per second to raise the temperature of the bar at section MN will be 

Qi=mass X specific heat X rate of increase of temperature 
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where ‘A’ is the area of cross section of bar,    is the density of material of 

bar, s is the specific heat of the material of bar. 

The heat lost due to radiation will be  

   xpEQ r           (6) 

Where E is the emissive power of the surface of bar, p is the perimeter of the 

surface,   be the average excess temperature above the surrounding of the bar 

between M & N. 

Thus from Equations (3, 4, 5 & 6) we get, 
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This is the general equation for rectilinear flow of heat along a bar and it is 

known as Fourier Equation of Heat flow. 

 Now we will consider some particular cases of interest 

 

1. Steady State: In this state, which is attain after some time, temperature of 

section MN does not change with time, i.e. 
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Thus Equation (7) reduces to 
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We see that  is the function of x only and we consider following two cases: 

 

 (i).  Radiation from the surface of the bar is allowed: If the bar is not insulated 

the Eq.(8) is  
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Where  
KA
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General solution of the equation (9)  is 
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Where b1 and b2 are constants which can be determined by knowing the 

boundary conditions. Let the boundary conditions 



For x=0, 0   and for x=∞ , 0  (i.e. the cold end is at the 

temperature of surrounding). Using these boundary conditions we get  b1=0 

and 02b   and from Eq. (10) we get 
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Eq. (11) gives the excess of temperature above the surrounding at any 

point at distance x along the bar, exposed to the radiation, after steady state is 

reached. We see that    is an exponential function of distance x  of the point 

from the hot end and is independent of time.   

 

(ii).  Radiation from the surface of the bar is not allowed: If the bar is insulated, 

there will be no loss of heat from the surface of the rod, i.e. E=0 in Eq. (8), and 

from (8) we get 
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On solving Eq. (9) we get 
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Where c1 and c2 are constants which can be determined by knowing the 

temperatures at the two points on the bar, 
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Equations (14) gives the excess temperature above surrounding at any 

point x along  the insulated bar.  

 



2. Variable State: If the heat lost by radiation is negligible(E=0), the equation (7) 

reduces to  
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 Quantity 
s

Kh


   is called diffusivity which determine s the rate at 

which temperature change takes place in the bar. The above equation can be solved 

when variation of   with time is known.  


