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Planck’s Law 

 

The earlier attempts to explain the energy distribution in the spectrum of 

black body are due to Wein’s and Rayleigh Jeans. Wein’s in 1893 explained it on the 

basis of classical thermodynamics whereas Rayleigh Jeans in 1900 explained it on 

the basis of Classical Electrodynamics theory with the application of statistical 

mechanics and equipartition of energy. These theories failed to give results 

compatible with experimental observations.  

In order to explain the energy distribution in the spectrum of black body 

Max Planck in 1905 proposed a new revolutionary hypothesis known as quantum 

theory by means of which he was able to derive the correct law of energy 

distribution in the spectrum of black body. 

Planck made the following two assumptions regarding the emission and 

absorption of radiations – 

1. A black body radiation chamber is filled up not only with radiation but also 

with simple harmonic oscillator or rasonators (energy emitters) [known as 

planck’s oscillators] of molecular dimensions. An oscillator cannot radiate or 

absorb energy continuously, but energy is emitted or absorbed descretely in 

the form of quanta called photons. 

An oscillator absorbs energy from the radiation field and deliver it 

back to the field in quanta of energy 0,  , 2   etc , where   is the quantum of 

energy which is proportional to frequency   of the oscillator i.e 

 h                        (1) 

 where  h = planck’s const = 6.61*10-34 j.s 

2. The number of Planck’s oscillators (resonators) emitting particular energy is 

given by statistical distribution law of Boltzmann. 



According to this law, the number of oscillators with energy   is 

proportional to  kTe


. 

If N be the total number of Planck’s oscillators and E is their total energy, 

then the average energy per oscillator is given by  

N
E

                                                           (2) 

If N0, N1, N2, …….Nr…… be the number of oscillators having energies 0,  , 

2   r……. respectively we have  

N =N0 +N1 +…… +Nr + ………….                        (3) 

and  

E = 0.N0 + N1 + 2N2 +…….. r Nr +                                                                     (4) 

According to Boltzmann distribution formula, the number of oscillators 

having rwill be  

kT
r

eNN 0r


                     (5) 

i.e. 

 kTeNN 01


 , kTeNN 01


 ……etc 

Thus from Eqs. (3 & 5), we get 
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from Eqs. (4 & 5), we get 
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From Eqs. (2, 5, & 6), average energy of oscillator is  
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Thus according to Planck the average energy of an oscillator, depends not 

only upon the temperature (according to kinetic theory E = kT) but also upon the 

frequency   . 

Since the number of Plank’s oscillators per unit volume in the frequency 

range   and  d  (i. e. total no. of modes of vibrations between frequency range   

and  d per unit volume) is 
 d
c

8
3

2
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Thus the energy density between the frequency range   and  d  is : 
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                                                                                (9) 

This is known as Planck’s Radiation Law in terms of frequency. This law 

can also be represented in terms of wavelength as given below:  

The energy density between the range of wavelength   and  d  can be 

obtained by using , 
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Or          
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This is Planck’s Radiation Law in terms of wavelength. 

 

The Planck’s law agrees well with the experimental results for all 

wavelengths. Furthermore the classical formulae can be deduced from it as special 

cases holding good under certain assumptions .Wein’s and Rayleigh jean’s law can 

be derived with the help of Planck’s law as follows :- 

 

Case-1: For Short Wavelengths 

For short wavelengths 1e kT
hc

  and 1 can be neglected in the denominator 

of equation (10) and Planck’s formula reduces to  
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This is Wein’s law.  

 

Case-2: For Long Wavelengths 

 For long wavelengths, 
kT
hc1e kT

hc


 , so that Planck’s formula  (10) 

reduces to 
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This is Rayleigh jeans law. 


